Unknown

Dataset Information

0

Differentiation of metallicolous and non-metallicolous Salix caprea populations based on phenotypic characteristics and nuclear microsatellite (SSR) markers.


ABSTRACT: The Salicaceae family comprises a large number of high-biomass species with remarkable genetic variability and adaptation to ecological niches. Salix caprea survives in heavy metal contaminated areas, translocates and accumulates Zn/Cd in leaves. To reveal potential selective effects of long-term heavy metal contaminations on the genetic structure and Zn/Cd accumulation capacity, 170 S. caprea isolates of four metal-contaminated and three non-contaminated middle European sites were analysed with microsatellite markers using Wright's F statistics. The differentiation of populations North of the Alps are more pronounced compared to the Southern ones. By grouping the isolates based on their contamination status, a weak but significant differentiation was calculated between Northern metallicolous and non-metallicolous populations. To quantify if the contamination and genetic status of the populations correlate with Zn/Cd tolerance and the accumulation capacity, the S. caprea isolates were exposed to elevated Cd/Zn concentrations in perlite-based cultures. Consistent with the genetic data nested anova analyses for the physiological traits find a significant difference in the Cd accumulation capacity between the Northern and Southern populations. Our data suggest that natural populations are a profitable source to uncover genetic mechanisms of heavy metal accumulation and biomass production, traits that are essential for improving phytoextraction strategies.

SUBMITTER: Puschenreiter M 

PROVIDER: S-EPMC4361689 | biostudies-literature | 2010 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Differentiation of metallicolous and non-metallicolous Salix caprea populations based on phenotypic characteristics and nuclear microsatellite (SSR) markers.

Puschenreiter Markus M   Türktaş Mine M   Sommer Peter P   Wieshammer Gerlinde G   Laaha Gregor G   Wenzel Walter W WW   Hauser Marie-Theres MT  

Plant, cell & environment 20101001 10


The Salicaceae family comprises a large number of high-biomass species with remarkable genetic variability and adaptation to ecological niches. Salix caprea survives in heavy metal contaminated areas, translocates and accumulates Zn/Cd in leaves. To reveal potential selective effects of long-term heavy metal contaminations on the genetic structure and Zn/Cd accumulation capacity, 170 S. caprea isolates of four metal-contaminated and three non-contaminated middle European sites were analysed with  ...[more]

Similar Datasets

| S-EPMC3675671 | biostudies-literature
| S-EPMC3968154 | biostudies-literature
| S-EPMC3910448 | biostudies-literature
| S-EPMC6344583 | biostudies-other
| S-EPMC3314946 | biostudies-literature
| S-EPMC4103459 | biostudies-literature
| S-EPMC4651633 | biostudies-literature
| S-EPMC4717340 | biostudies-literature
| S-EPMC4134192 | biostudies-literature
| S-EPMC2663183 | biostudies-literature