Unknown

Dataset Information

0

Dynamic interplay of spectrosome and centrosome organelles in asymmetric stem cell divisions.


ABSTRACT: Stem cells have remarkable self-renewal ability and differentiation potency, which are critical for tissue repair and tissue homeostasis. Recently it has been found, in many systems (e.g. gut, neurons, and hematopoietic stem cells), that the self-renewal and differentiation balance is maintained when the stem cells divide asymmetrically. Drosophila male germline stem cells (GSCs), one of the best characterized model systems with well-defined stem cell niches, were reported to divide asymmetrically, where centrosome plays an important role. Utilizing time-lapse live cell imaging, customized tracking, and image processing programs, we found that most acentrosomal GSCs have the spectrosomes reposition from the basal end (wild type) to the apical end close to hub-GSC interface (acentrosomal GSCs). In addition, these apically positioned spectrosomes were mostly stationary while the basally positioned spectrosomes were mobile. For acentrosomal GSCs, their mitotic spindles were still highly oriented and divided asymmetrically with longer mitosis duration, resulting in asymmetric divisions. Moreover, when the spectrosome was knocked out, the centrosomes velocity decreased and centrosomes located closer to hub-GSC interface. We propose that in male GSCs, the spectrosome recruited to the apical end plays a complimentary role in ensuring proper spindle orientation when centrosome function is compromised.

SUBMITTER: Bang C 

PROVIDER: S-EPMC4388834 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamic interplay of spectrosome and centrosome organelles in asymmetric stem cell divisions.

Bang Chi C   Cheng Jun J  

PloS one 20150407 4


Stem cells have remarkable self-renewal ability and differentiation potency, which are critical for tissue repair and tissue homeostasis. Recently it has been found, in many systems (e.g. gut, neurons, and hematopoietic stem cells), that the self-renewal and differentiation balance is maintained when the stem cells divide asymmetrically. Drosophila male germline stem cells (GSCs), one of the best characterized model systems with well-defined stem cell niches, were reported to divide asymmetrical  ...[more]

Similar Datasets

| S-EPMC5844954 | biostudies-literature
| S-EPMC3077085 | biostudies-literature
| S-EPMC3438319 | biostudies-literature
| S-EPMC3186899 | biostudies-other
| S-EPMC3890347 | biostudies-literature
2022-12-30 | GSE167379 | GEO
| S-EPMC1399371 | biostudies-literature
| S-EPMC9767456 | biostudies-literature
| S-EPMC4649634 | biostudies-literature
| S-EPMC3466335 | biostudies-literature