Project description:Many insects can be persistently infected with viruses but do not show any obvious adverse effects with respect to physiology, development or reproduction. Here, Bombyx mori strain Daizo, persistently infected with cytoplasmic polyhedrosis virus (BmCPV), was used to study the host's transcriptional response after pathogenic infection with the same virus in midgut tissue of larvae persistently and pathogenically infected as 2nd and 4th instars. Next generation sequencing revealed that from 13,769 expressed genes, 167 were upregulated and 141 downregulated in both larval instars following pathogenic infection. Several genes that could possibly be involved in B. mori immune response against BmCPV or that may be induced by the virus in order to increase infectivity were identified, whereas classification of differentially expressed transcripts (confirmed by qRT-PCR) resulted in gene categories related to physical barriers, immune responses, proteolytic/metabolic enzymes, heat-shock proteins, hormonal signaling and uncharacterized proteins. Comparison of our data with the available literature (pathogenic infection of persistently vs. non-persistently infected larvae) unveiled various similarities of response in both cases, which suggests that pre-existing persistent infection does not affect in a major way the transcriptome response against pathogenic infection. To investigate the possible host's RNAi response against BmCPV challenge, the differential expression of RNAi-related genes and the accumulation of viral small RNAs (vsRNAs) were studied. During pathogenic infection, siRNA-like traces like the 2-fold up-regulation of the core RNAi genes Ago-2 and Dcr-2 as well as a peak of 20 nt small RNAs were observed. Interestingly, vsRNAs of the same size were detected at lower rates in persistently infected larvae. Collectively, our data provide an initial assessment of the relative significance of persistent infection of silkworm larvae on the host response following pathogenic infection with CPV, while they also highlight the relative importance of RNAi as an antiviral mechanism.
Project description:UnlabelledThe lepidopteran innate immune response against RNA viruses remains poorly understood, while in other insects several studies have highlighted an essential role for the exo-RNAi pathway in combating viral infection. Here, by using deep-sequencing technology for viral small-RNA (vsRNA) assessment, we provide evidence that exo-RNAi is operative in the silkworm Bombyx mori against both persistent and pathogenic infection of B. mori cytoplasmic polyhedrosis virus (BmCPV) which is characterized by a segmented double-stranded RNA (dsRNA) genome. Further, we show that Dicer-2 predominantly targets viral dsRNA and produces 20-nucleotide (nt) vsRNAs, whereas an additional pathway is responsive to viral mRNA derived from segment 10. Importantly, vsRNA distributions, which define specific hot and cold spot profiles for each viral segment, to a considerable degree overlap between Dicer-2-related (19 to 21 nt) and Dicer-2-unrelated vsRNAs, suggesting a common origin for these profiles. We found a degenerate motif significantly enriched at the cut sites of vsRNAs of various lengths which link an unknown RNase to the origins of vsRNAs biogenesis and distribution. Accordingly, the indicated RNase activity may be an important early factor for the host's antiviral defense in Lepidoptera.ImportanceThis work contributes to the elucidation of the lepidopteran antiviral response against infection of segmented double-stranded RNA (dsRNA) virus (CPV; Reoviridae) and highlights the importance of viral small-RNA (vsRNA) analysis for getting insights into host-pathogen interactions. Three vsRNA pathways are implicated in antiviral defense. For dsRNA, two pathways are proposed, either based on Dicer-2 cleavage to generate 20-nucleotide vsRNAs or based on the activity of an uncharacterized endo-RNase that cleaves the viral RNA substrate at a degenerate motif. The analysis also indicates the existence of a degradation pathway that targets the positive strand of segment 10.
Project description:The pathogenesis of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) infection is unclear, although accumulating evidence indicates that circular RNAs (circRNAs), which act as competing endogenous RNAs or positive regulators, play important roles in regulating gene expression in eukaryotes and, thus, may play a role in BmCPV infections. To explore the expression and biological functions of circRNAs in the silkworm midgut following BmCPV infection, silkworm circRNA expression profiles of normal midgut tissue (control) and BmCPV-infected midgut tissue (test) were determined using high-through sequencing. A total of 9,753 and 7,475circRNAs were detected from the control and test samples, respectively. The two samples shared 6,085 circRNAs, while 646 and 737 circRNAs were expressed specifically in the control and test samples, respectively. A total of 3,638 circRNAs were shown to be differentially expressed, and 400 circRNAs were substantially differentially expressed with a fold-change ≥ 2.0 (p< 0.05 and a false discover rate < 0.05), of which 294 were up-regulated and 106 were down-regulated following infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted to determine the principal functions of the substantially differentially regulated genes. circRNA-miRNA interaction networks were constructed based on a correlation analysis between the differentially expressed circRNAs and the nature of their microRNA (miRNA) binding sites. The network inferred that 13 miRNAs interacting with 193 circRNAs were among the 300 most abundant relationships. bmo-miR-3389-5p, bmo-miR-745-3p, and bmo-miR-3262 were related to 30, 34, and 34 circRNAs, respectively. circRNA_8115, circRNA_9444, circRNA_4553, circRNA_0827, and circRNA_6649 contained six, five, four, four, and four miRNA binding sites, respectively. We further found that alternative circularization of circRNAs is a common feature in silkworms and that the junction sites of many silkworm circRNAs are flanked by canonical GT/AG splicing signals. Our study is the first to show the circRNA response to virus infection. Thus, it provides a novel perspective on circRNA-miRNA interactions during BmCPV pathogenesis, and it lays the foundation for future research of the potential roles of circRNAs in BmCPV pathogenesis.
Project description:The complete nucleotide sequence of the genome segment 4 (S4) of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) was determined. The 3,259-nucleotide sequence contains a single long open reading frame which spans nucleotides 14 to 3187 and which is predicted to encode a protein with a molecular mass of about 130 kDa. Western blot analysis showed that S4 encodes BmCPV protein VP3, which is one of the outer components of the BmCPV virion. Sequence analysis of the deduced amino acid sequence of BmCPV VP3 revealed possible sequence homology with proteins from rice ragged stunt virus (RRSV) S2, Nilaparvata lugens reovirus S4, and Fiji disease fijivirus S4. This may suggest that plant reoviruses originated from insect viruses and that RRSV emerged more recently than other plant reoviruses. A chimeric protein consisting of BmCPV VP3 and green fluorescent protein (GFP) was constructed and expressed with BmCPV polyhedrin using a baculovirus expression vector. The VP3-GFP chimera was incorporated into BmCPV polyhedra and released under alkaline conditions. The results indicate that specific interactions occur between BmCPV polyhedrin and VP3 which might facilitate BmCPV virion occlusion into the polyhedra.
Project description:The genome of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) contains 10 double stranded RNA segments (S1-S10). The segment 7 (S7) encodes 50kDa protein which is considered as a structural protein. The expression pattern and function of p50 in the virus life cycle are still unclear. In this study, the viral structural protein 7 (VP7) polyclonal antibody was prepared with immunized mouse to explore the presence of small VP7 gene-encoded proteins in Bombyx mori cytoplasmic polyhedrosis virus. The expression pattern of vp7 gene was investigated by its overexpression in BmN cells. In addition to VP7, supplementary band was identified with western blotting technique. The virion, BmCPV infected cells and midguts were also examined using western blotting technique. 4, 2 and 5 bands were detected in the corresponding samples, respectively. The replication of BmCPV genome in the cultured cells and midgut of silkworm was decreased by reducing the expression level of vp7 gene using RNA interference. In immunoprecipitation experiments, using a polyclonal antiserum directed against the VP7, one additional shorter band in BmCPV infected midguts was detected, and then the band was analyzed with mass spectrum (MS), the MS results showed thatone candidate interacted protein (VP7 voltage-dependent anion-selective channel-like isoform, VDAC) was identified from silkworm. We concluded that the novel viral product was generated with a leaky scanning mechanism and the VDAC may be an interacted protein with VP7.
Project description:The midgut is the major organ for food digestion, nutrient absorption and also a barrier for foreign substance. The 5th-instar larval stage of silkworm is very important for larval growth, development, and silk production. In the present study, we used 2-DE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to analyze the midgut proteins from the 5th-instar larvae as well as the midgut proteins under starvation condition. A total of 96 proteins were identified in this study; and among them, 69 proteins were observed in midgut for the first time. We also found that the silkworm larval midgut responded to starvation by producing a 10 kDa heat shock protein and a diapause hormone precursor.
Project description:Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is one of the most important pathogens of silkworm. MicroRNAs (miRNAs) have been demonstrated to play key roles in regulating host-pathogen interaction. However, there are limited reports on the miRNAs expression profiles during insect pathogen challenges. In this study, four small RNA libraries from BmCPV-infected midgut of silkworm at 72 h post-inoculation and 96 h post-inoculation and their corresponding control midguts were constructed and deep sequenced. A total of 316 known miRNAs (including miRNA*) and 90 novel miRNAs were identified. Fifty-eight miRNAs displayed significant differential expression between the infected and normal midgut (P value < = 0.01 and fold change > = 2.0 or < = 0.5), among which ten differentially expressed miRNA were validated by qRT-PCR method. Further bioinformatics analysis of predicted target genes of differentially expressed miRNAs showed that the miRNA targets were involved in stimulus and immune system process in silkworm.
Project description:Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens causing severe economic losses in sericulture. However, the molecular mechanism of silkworm resistance to BmNPV remains largely unknown. Here, the recurrent parent P50 (susceptible strain) and the near-isogenic line BC9 (resistance strain) were used in a comparative transcriptome study examining the response to infection with BmNPV. A total of 14,300 unigenes were obtained from two different resistant strains; of these, 869 differentially expressed genes (DEGs) were identified after comparing the four transcriptomes. Many DEGs associated with protein metabolism, cytoskeleton, and apoptosis may be involved in the host response to BmNPV infection. Moreover, some immunity related genes were also altered following BmNPV infection. Specifically, after removing genetic background and individual immune stress response genes, 22 genes were found to be potentially involved in repressing BmNPV infection. These genes were related to transport, virus replication, intracellular innate immune, and apoptosis. Our study provided an overview of the molecular mechanism of silkworm resistance to BmNPV infection and laid a foundation for controlling BmNPV in the future.
Project description:Bombyx mori cytoplasmic polyhedrosis virus (BmCPV)that belongs to the genus Cypovirus in the family of Reoviridae is one of the problematic pathogens in sericulture. In our previous study, we have found that lipid-related constituents in the host cellular membrane are associated with the BmCPV life cycle. It is important to note that the lipids not only affect the cellular biological processes, they also impact the virus life cycle. However, the intracellular lipid homeostasis in BmN cells after BmCPV infection remains unclear. Here, the lipid metabolism in BmCPV-infected BmN cells was studied by lipidomics analysis. Our results revealed that the intracellular lipid homeostasis was disturbed in BmN cells upon BmCPV infection. Major lipids constituents in cellular membrane were found to be significantly induced upon BmCPV infection, which included triglycerides, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, phospholipids, glucoside ceramide, monoetherphosphatidylcholin, ceramide, ceramide phosphoethanolamine and cardiolipin. Further analysis of the pathways related to these altered lipids (such as PE and PC) showed that glycerophospholipid metabolism was one of the most enriched pathways. These results suggested that BmCPV may manipulate the lipid metabolism of cells for their own interest. The findings may facilitate a better understanding of the roles of lipid metabolic changes during virus infection in future studies.
Project description:Some insect viruses encode suppressors of RNA interference (RNAi) to counteract the antiviral RNAi pathway. However, it is unknown whether Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) encodes an RNAi suppressor. In this study, the presence of viral small interfering RNA (vsiRNA) in BmN cells infected with BmCPV was confirmed by small RNA sequencing. The Dual-Luciferase reporter test demonstrated that BmCPV infection may prevent firefly luciferase (Luc) gene silencing caused by particular short RNA. It was also established that the inhibition relied on the nonstructural protein NSP8, which suggests that NSP8 was a possible RNAi suppressor. In cultured BmN cells, the expressions of viral structural protein 1 (vp1) and NSP9 were triggered by overexpression of nsp8, suggesting that BmCPV proliferation was enhanced by NSP8. A pulldown assay was conducted with BmCPV genomic double-stranded RNA (dsRNA) labeled with biotin. The mass spectral detection of NSP8 in the pulldown complex suggests that NSP8 is capable of direct binding to BmCPV genomic dsRNA. The colocalization of NSP8 and B. mori Argonaute 2 (BmAgo2) was detected by an immunofluorescence assay, leading to the hypothesis that NSP8 interacts with BmAgo2. Coimmunoprecipitation further supported the present investigation. Moreover, vasa intronic protein, a component of RNA-induced silencing complex (RISC), could be detected in the coprecipitation complex of NSP8 by mass spectrum analysis. NSP8 and the mRNA decapping protein (Dcp2) were also discovered to colocalize to processing bodies (P bodies) for RNAi-mediated gene silencing in Saccharomyces cerevisiae. These findings revealed that by interacting with BmAgo2 and suppressing RNAi, NSP8 promoted BmCPV growth. IMPORTANCE It has been reported that the RNAi pathway is inhibited by binding RNAi suppressors encoded by some insect-specific viruses belonging to Dicistroviridae, Nodaviridae, or Birnaviridae to dsRNAs to protect dsRNAs from being cut by Dicer-2. However, it is unknown whether BmCPV, belonging to Spinareoviridae, encodes an RNAi suppressor. In this study, we found that nonstructural protein NSP8 encoded by BmCPV inhibits small interfering RNA (siRNA)-induced RNAi and that NSP8, as an RNAi suppressor, can bind to viral dsRNAs and interact with BmAgo2. Moreover, vasa intronic protein, a component of RISC, was found to interact with NSP8. Heterologously expressed NSP8 and Dcp2 were colocalized to P bodies in yeast. These results indicated that NSP8 promoted BmCPV proliferation by binding itself to BmCPV genomic dsRNAs and interacting with BmAgo2 through suppression of siRNA-induced RNAi. Our findings deepen our understanding of the game between BmCPV and silkworm in regulating viral infection.