Unknown

Dataset Information

0

Multistage Nanovectors Enhance the Delivery of Free and Encapsulated Drugs.


ABSTRACT: Nanoparticles have considerable potential for cancer imaging and therapy due to their small size and prolonged circulation. However, biological barriers can impede the delivery of a sufficient dose of a drug to the target site, thereby also resulting in the accumulation of toxic compounds within healthy tissues, and systemic toxicity. Multistage nanovectors (MSV) preferentially accumulate on inflamed endothelium, and can thus serve as carriers for drugs and nanoparticles. Herein, we describe the loading of free (i.e., melittin) and nano-encapsulated (i.e., doxorubicin-loaded micelles) drugs into MSV, and report the impact of surface charge and pore size on drug loading. For both drug formulations, negatively charged MSV (i.e., oxidized) with larger pores were shown to retain higher concentrations of payloads compared to positively charged (i.e., APTES-modified) MSV with small pores. Treatment of human umbilical vein endothelial cells (HUVEC) with melittin-loaded MSV (MEL@MSV) resulted in an 80% reduction in cell viability after 3 days. Furthermore, MEL@MSV conjugated with antivascular endothelial growth factor receptor 2 (VEGFR2) antibodies displayed preferential targeting and delivery of MEL to activated HUVEC expressing VEGFR2. Treatment of HUVEC and MCF7 cells with doxorubicin-loaded micelles (DOXNP@MSV) resulted in a 23% and 47% reduction in cell viability, respectively. Taken together, these results demonstrate increased loading of a payload in oxidized, large pore MSV, and effective delivery of free and nano-encapsulated drugs to endothelial and cancer cells.

SUBMITTER: Martinez JO 

PROVIDER: S-EPMC4398589 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multistage Nanovectors Enhance the Delivery of Free and Encapsulated Drugs.

Martinez Jonathan O JO   Evangelopoulos Michael M   Bhavane Rohan R   Acciardo Stefania S   Salvatore Francesco F   Liu Xuewu X   Ferrari Mauro M   Tasciotti Ennio E  

Current drug targets 20150101 14


Nanoparticles have considerable potential for cancer imaging and therapy due to their small size and prolonged circulation. However, biological barriers can impede the delivery of a sufficient dose of a drug to the target site, thereby also resulting in the accumulation of toxic compounds within healthy tissues, and systemic toxicity. Multistage nanovectors (MSV) preferentially accumulate on inflamed endothelium, and can thus serve as carriers for drugs and nanoparticles. Herein, we describe the  ...[more]

Similar Datasets

| S-EPMC4182937 | biostudies-literature
| S-EPMC3204797 | biostudies-literature
| S-EPMC5565768 | biostudies-literature
| S-EPMC8390661 | biostudies-literature
| S-EPMC9145636 | biostudies-literature
| S-EPMC7987750 | biostudies-literature
| S-EPMC7305972 | biostudies-literature
| S-EPMC4808193 | biostudies-literature
| S-EPMC3160510 | biostudies-literature
| S-EPMC3045963 | biostudies-literature