Unknown

Dataset Information

0

Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia.


ABSTRACT: Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically induced mutants of the genetically intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole-genome sequencing, providing a platform for reverse genetic applications. An analysis of possible loss-of-function mutations in the collection uncovered plasticity in the central metabolic properties of this obligate intracellular pathogen. We also describe the use of the library in a forward genetic screen that identified InaC as a bacterial factor that binds host ARF and 14-3-3 proteins and modulates F-actin assembly and Golgi redistribution around the pathogenic vacuole. This work provides a robust platform for reverse and forward genetic approaches in Chlamydia and should serve as a valuable resource to the community.

SUBMITTER: Kokes M 

PROVIDER: S-EPMC4418230 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia.

Kokes Marcela M   Dunn Joe Dan JD   Granek Joshua A JA   Nguyen Bidong D BD   Barker Jeffrey R JR   Valdivia Raphael H RH   Bastidas Robert J RJ  

Cell host & microbe 20150423 5


Gene inactivation by transposon insertion or allelic exchange is a powerful approach to probe gene function. Unfortunately, many microbes, including Chlamydia, are not amenable to routine molecular genetic manipulations. Here we describe an arrayed library of chemically induced mutants of the genetically intransigent pathogen Chlamydia trachomatis, in which all mutations have been identified by whole-genome sequencing, providing a platform for reverse genetic applications. An analysis of possibl  ...[more]

Similar Datasets

| S-EPMC5052037 | biostudies-literature
| S-EPMC9284286 | biostudies-literature
| S-EPMC4024006 | biostudies-literature
| S-EPMC5702255 | biostudies-literature
| S-EPMC156306 | biostudies-literature
| S-EPMC3268281 | biostudies-literature
| S-EPMC8265183 | biostudies-literature
| S-EPMC6580595 | biostudies-literature
| S-EPMC4245081 | biostudies-literature
| S-EPMC8664941 | biostudies-literature