Unknown

Dataset Information

0

Adipocyte SIRT1 knockout promotes PPAR? activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity.


ABSTRACT:

Objective

Adipose tissue is the primary site for lipid deposition that protects the organisms in cases of nutrient excess during obesogenic diets. The histone deacetylase Sirtuin 1 (SIRT1) inhibits adipocyte differentiation by targeting the transcription factor peroxisome proliferator activated-receptor gamma (PPAR?).

Methods

To assess the specific role of SIRT1 in adipocytes, we generated Sirt1 adipocyte-specific knockout mice (ATKO) driven by aP2 promoter onto C57BL/6 background. Sirt1 (flx/flx) aP2Cre (+) (ATKO) and Sirt1 (flx/flx) aP2Cre (-) (WT) mice were fed high-fat diet for 5 weeks (short-term) or 15 weeks (chronic-term). Metabolic studies were combined with gene expression analysis and phosphorylation/acetylation patterns in adipose tissue.

Results

On standard chow, ATKO mice exhibit low-grade chronic inflammation in adipose tissue, along with glucose intolerance and insulin resistance compared with control fed mice. On short-term HFD, ATKO mice become more glucose intolerant, hyperinsulinemic, insulin resistant and display increased inflammation. During chronic HFD, WT mice developed a metabolic dysfunction, higher than ATKO mice, and thereby, knockout mice are more glucose tolerant, insulin sensitive and less inflamed relative to control mice. SIRT1 attenuates adipogenesis through PPAR? repressive acetylation and, in the ATKO mice adipocyte PPAR? was hyperacetylated. This high acetylation was associated with a decrease in Ser273-PPAR? phosphorylation. Dephosphorylated PPAR? is constitutively active and results in higher expression of genes associated with increased insulin sensitivity.

Conclusion

Together, these data establish that SIRT1 downregulation in adipose tissue plays a previously unknown role in long-term inflammation resolution mediated by PPAR? activation. Therefore, in the context of obesity, the development of new therapeutics that activate PPAR? by targeting SIRT1 may provide novel approaches to the treatment of T2DM.

SUBMITTER: Mayoral R 

PROVIDER: S-EPMC4421024 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Objective</h4>Adipose tissue is the primary site for lipid deposition that protects the organisms in cases of nutrient excess during obesogenic diets. The histone deacetylase Sirtuin 1 (SIRT1) inhibits adipocyte differentiation by targeting the transcription factor peroxisome proliferator activated-receptor gamma (PPARγ).<h4>Methods</h4>To assess the specific role of SIRT1 in adipocytes, we generated Sirt1 adipocyte-specific knockout mice (ATKO) driven by aP2 promoter onto C57BL/6 background  ...[more]

Similar Datasets

| S-EPMC6791934 | biostudies-literature
| S-EPMC3783197 | biostudies-literature
| S-EPMC2730923 | biostudies-literature
| S-EPMC5376747 | biostudies-literature
| S-EPMC4455245 | biostudies-literature
| S-EPMC10776757 | biostudies-literature
| S-EPMC5983395 | biostudies-literature
| S-EPMC6308911 | biostudies-literature
| S-EPMC5642576 | biostudies-literature
| S-EPMC3377107 | biostudies-literature