Project description:Vibrio parahaemolyticus is an important causative agent of gastroenteritis, with the consumption of contaminated seafood being the major transmission route. Resistance to penicillin is common among V. parahaemolyticus strains, whereas cephalosporin resistance remains rare. In an attempt to assess the current prevalence and characteristics of antibiotic resistance of this pathogen in common food samples, a total of 54 (17% of the total samples) V. parahaemolyticus strains were isolated from 318 meat and seafood samples purchased from supermarkets and wet markets in Shenzhen, China, in 2013. These isolates exhibited high-level resistance to ampicillin, yet they were mostly susceptible to other antimicrobials, except for two that were resistant to extended-spectrum cephalosporins. The ?-lactamase gene blaPER-1 was detectable in one strain, V. parahaemolyticus V43, which was resistant to both third- and fourth-generation cephalosporins. Compared to other blaPER-1-positive V. parahaemolyticus strains reported in our previous studies, strain V43 was found to harbor an ?200-kb conjugative plasmid carrying genes that were different from the antimicrobial resistance genes reported from the previous studies. The ?-lactamase gene blaCMY-2 was detectable for the first time in another V. parahaemolyticus isolate, V4, which was resistant to third-generation cephalosporins. This blaCMY-2 gene was shown to be located in an ?150-kb IncA/C-type conjugative plasmid with a genetic structure consisting of traB-traV-traA-ISEcp1-blaCMY-2-blc-sugE-encR-orf1-orf2-orf3-orf4-dsbC-traC, which is identical to that of other IncA/C conjugative plasmids in Enterobacteriaceae, albeit with a different size. These findings indicate that the transmission of extended-spectrum-?-lactamase (ESBL) and AmpC ?-lactamase genes via conjugative plasmids can mediate the development of extended-spectrum cephalosporin resistance in V. parahaemolyticus, thereby posing a potential threat to public health.
Project description:With the wide spread of multidrug-resistant bacteria, a variety of aminoglycosides have been used in clinical practice as one of the effective options for antimicrobial combinations. However, in recent years, the emergence of high-level resistance against pan-aminoglycosides has worsened the status of antimicrobial resistance, so the production of 16S rRNA methyltransferase (16S-RMTase) should not be ignored as one of the most important resistance mechanisms. What is more, on account of transferable plasmids, the horizontal transfer of resistance genes between pathogens becomes easier and more widespread, which brings challenges to the treatment of infectious diseases and infection control of drug-resistant bacteria. In this review, we will make a presentation on the prevalence and genetic environment of 16S-RMTase encoding genes that lead to high-level resistance to aminoglycosides.
Project description:Identical beta-lactamase-encoding (TEM-1) plasmids were found in two different clinical Neisseria meningitidis strains. They were completely sequenced (5,597 bp) and designated pAB6. The plasmid is almost identical to Neisseria gonorrhoeae plasmid pJD5 (5,599 kb) and may have been picked up from a gonococcus in vivo.
Project description:Complete nucleotide sequences were determined for two plasmids bearing rmtD group 16S rRNA methyltransferase genes. pKp64/11 was 78 kb in size, belonged to the IncL/M group, and harbored blaTEM-1b, sul1, qacE?1, dfrA22, and rmtD1 across two multidrug resistance regions (MRRs). pKp368/10 was 170 kb in size, belonged to the IncA/C group, and harbored acrB, sul1, qacE?1, ant(3?)-Ia, aac(6')-Ib, cat, rmtD2, and blaCTX-M-8 across three MRRs. The rmtD-containing regions shared a conserved motif, suggesting a common origin for the two rmtD alleles.
Project description:Plasmid pTKH11, originally obtained by electroporation of a Klebsiella oxytoca plasmid preparation into Escherichia coli XAC, expressed a high level of an AmpC-like beta-lactamase. The enzyme, designated CMY-5, conferred resistance to extended-spectrum beta-lactams in E. coli; nevertheless, the phenotype was cryptic in the K. oxytoca donor. Determination of the complete nucleotide sequence of pTKH11 revealed that the 8,193-bp plasmid encoded seven open reading frames, including that for the CMY-5 beta-lactamase (blaCMY-5). The blaCMY-5 product was similar to the plasmidic CMY-2 beta-lactamase of K. pneumoniae and the chromosomal AmpC of Citrobacter freundii, with 99.7 and 97.0% identities, respectively; there was a substitution of phenylalanine in CMY-5 for isoleucine 105 in CMY-2. blaCMY-5 was followed by the Blc and SugE genes of C. freundii, and this cluster exhibited a genetic organization identical to that of the ampC region on the chromosome of C. freundii; these results confirmed that C. freundii AmpC was the evolutionary origin of the plasmidic cephamycinases. In the K. oxytoca host, the copy number of pTKH11 was very low and the plasmid coexisted with plasmid pNBL63. Analysis of the replication regions of the two plasmids revealed 97% sequence similarity in the RNA I transcripts; this result implied that the two plasmids might be incompatible. Incompatibility of the two plasmids might explain the cryptic phenotype of blaCMY-5 in K. oxytoca through an exclusion effect on pTKH11 by resident plasmid pNBL63.
Project description:Multidrug-resistant (MDR) Acinetobacter baumannii strains appeared as serious emerging nosocomial pathogens in clinical environments and especially in intensive care units (ICUs). A. baumannii strain K50, recovered from a hospitalized patient in Kuwait, exhibited resistance to carbapenems and additionally to ciprofloxacin, chloramphenicol, sulfonamides, amikacin, and gentamicin. Genome sequencing revealed that the strain possesses two plasmids, pK50a (79.6 kb) and pK50b (9.5 kb), and a 3.75-Mb chromosome. A. baumannii K50 exhibits an average nucleotide identity (ANI) of 99.98% to the previously reported Iraqi clinical isolate AA-014, even though the latter strain lacked plasmid pK50a. Strain K50 belongs to sequence type 158 (ST158) (Pasteur scheme) and ST499 (Oxford scheme). Plasmid pK50a is a member of the Aci6 (replication group 6 [RG6]) group of Acinetobacter plasmids and carries a conjugative transfer module and two antibiotic resistance gene regions. The transposon Tn2008 carries the carbapenemase gene blaOXA-23, whereas a class 1 integron harbors the resistance genes blaGES-11, aacA4, dfrA7, qacEΔ1, and sul1, conferring resistance to all β-lactams and reduced susceptibility to carbapenems and resistance to aminoglycosides, trimethoprim, quaternary ammonium compounds, and sulfamethoxazole, respectively. The class 1 integron is flanked by MITEs (miniature inverted-repeat transposable elements) delimiting the element at its insertion site.
Project description:Self-transferable IncFI plasmid pIP1206, isolated from an Escherichia coli clinical isolate, carries two new resistance determinants: qepA, which confers resistance to hydrophylic fluoroquinolones by efflux, and rmtB, which specifies a 16S rRNA methylase conferring high-level aminoglycoside resistance. Analysis of the 168,113-bp sequence (51% G+C) revealed that pIP1206 was composed of several subregions separated by copies of insertion sequences. Of 151 open reading frames, 56 (37%) were also present in pRSB107, isolated from a bacterium in a sewage treatment plant. pIP1206 contained four replication regions (RepFIA, RepFIB, and two partial RepFII regions) and a transfer region 91% identical with that of pAPEC-O1-ColBM, a plasmid isolated from an avian pathogenic E. coli. A putative oriT region was found upstream from the transfer region. The antibiotic resistance genes tet(A), catA1, bla(TEM-1), rmtB, and qepA were clustered in a 33.5-kb fragment delineated by two IS26 elements that also carried a class 1 integron, including the sulI, qacEDelta1, aad4, and dfrA17 genes and Tn10, Tn21, and Tn3-like transposons. The plasmid also possessed a raffinose operon, an arginine deiminase pathway, a putative iron acquisition gene cluster, an S-methylmethionine metabolism operon, two virulence-associated genes, and a type I DNA restriction-modification (R-M) system. Three toxin/antitoxin systems and the R-M system ensured stabilization of the plasmid in the host bacteria. These data suggest that the mosaic structure of pIP1206 could have resulted from recombination between pRSB107 and a pAPEC-O1-ColBM-like plasmid, combined with structural rearrangements associated with acquisition of additional DNA by recombination and of mobile genetic elements by transposition.
Project description:A 269-kilobase conjugative plasmid, pK29, from a Klebsiella pneumoniae strain was sequenced. The plasmid harbors multiple antimicrobial resistance genes, including those encoding CMY-8 AmpC-type and CTX-M-3 extended-spectrum beta-lactamases in the common backbone of IncHI2 plasmids. Mechanisms for dissemination of the resistance genes are highlighted in comparative genomic analyses.