Unknown

Dataset Information

0

Jointly Learning Multiple Sequential Dynamics for Human Action Recognition.


ABSTRACT: Discovering visual dynamics during human actions is a challenging task for human action recognition. To deal with this problem, we theoretically propose the multi-task conditional random fields model and explore its application on human action recognition. For visual representation, we propose the part-induced spatiotemporal action unit sequence to represent each action sample with multiple partwise sequential feature subspaces. For model learning, we propose the multi-task conditional random fields (MTCRFs) model to discover the sequence-specific structure and the sequence-shared relationship. Specifically, the multi-chain graph structure and the corresponding probabilistic model are designed to represent the interaction among multiple part-induced action unit sequences. Moreover we propose the model learning and inference methods to discover temporal context within individual action unit sequence and the latent correlation among different body parts. Extensive experiments are implemented to demonstrate the superiority of the proposed method on two popular RGB human action datasets, KTH & TJU, and the depth dataset in MSR Daily Activity 3D.

SUBMITTER: Liu AA 

PROVIDER: S-EPMC4493153 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Jointly Learning Multiple Sequential Dynamics for Human Action Recognition.

Liu An-An AA   Su Yu-Ting YT   Nie Wei-Zhi WZ   Yang Zhao-Xuan ZX  

PloS one 20150706 7


Discovering visual dynamics during human actions is a challenging task for human action recognition. To deal with this problem, we theoretically propose the multi-task conditional random fields model and explore its application on human action recognition. For visual representation, we propose the part-induced spatiotemporal action unit sequence to represent each action sample with multiple partwise sequential feature subspaces. For model learning, we propose the multi-task conditional random fi  ...[more]

Similar Datasets

| S-EPMC5772166 | biostudies-literature
| S-EPMC7411841 | biostudies-literature
| S-EPMC8933401 | biostudies-literature
| S-EPMC2585816 | biostudies-literature
| S-EPMC5539832 | biostudies-other
| S-EPMC10925202 | biostudies-literature
| S-EPMC9378731 | biostudies-literature
| S-EPMC2253184 | biostudies-literature
| S-EPMC8496402 | biostudies-literature
| S-EPMC9865094 | biostudies-literature