Unknown

Dataset Information

0

Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy.


ABSTRACT: Cancer-associated genetic alterations induce expression of tumour antigens that can activate CD8(+) cytotoxic T cells (CTLs), but the microenvironment of established tumours promotes immune tolerance through poorly understood mechanisms. Recently developed therapeutics that overcome tolerogenic mechanisms activate tumour-directed CTLs and are effective in some human cancers. Immune mechanisms also affect treatment outcome, and certain chemotherapeutic drugs stimulate cancer-specific immune responses by inducing immunogenic cell death and other effector mechanisms. Our previous studies revealed that B cells recruited by the chemokine CXCL13 into prostate cancer tumours promote the progression of castrate-resistant prostate cancer by producing lymphotoxin, which activates an I?B kinase ? (IKK?)-BMI1 module in prostate cancer stem cells. Because castrate-resistant prostate cancer is refractory to most therapies, we examined B cell involvement in the acquisition of chemotherapy resistance. Here we focus on oxaliplatin, an immunogenic chemotherapeutic agent that is effective in aggressive prostate cancer. We show that mouse B cells modulate the response to low-dose oxaliplatin, which promotes tumour-directed CTL activation by inducing immunogenic cell death. Three different mouse prostate cancer models were refractory to oxaliplatin unless genetically or pharmacologically depleted of B cells. The crucial immunosuppressive B cells are plasmocytes that express IgA, interleukin (IL)-10 and programmed death ligand 1 (PD-L1), the appearance of which depends on TGF? receptor signalling. Elimination of these cells, which also infiltrate human-therapy-resistant prostate cancer, allows CTL-dependent eradication of oxaliplatin-treated tumours.

SUBMITTER: Shalapour S 

PROVIDER: S-EPMC4501632 | biostudies-literature | 2015 May

REPOSITORIES: biostudies-literature

altmetric image

Publications


Cancer-associated genetic alterations induce expression of tumour antigens that can activate CD8(+) cytotoxic T cells (CTLs), but the microenvironment of established tumours promotes immune tolerance through poorly understood mechanisms. Recently developed therapeutics that overcome tolerogenic mechanisms activate tumour-directed CTLs and are effective in some human cancers. Immune mechanisms also affect treatment outcome, and certain chemotherapeutic drugs stimulate cancer-specific immune respo  ...[more]

Similar Datasets

| S-EPMC6826654 | biostudies-literature
| S-EPMC4106151 | biostudies-literature
| S-EPMC9953776 | biostudies-literature
| S-EPMC3816363 | biostudies-literature
| S-EPMC3655739 | biostudies-literature
| S-EPMC4008470 | biostudies-literature
| S-EPMC3376992 | biostudies-literature
| S-EPMC4485780 | biostudies-literature
| S-EPMC10240992 | biostudies-literature
| S-EPMC9923812 | biostudies-literature