Unknown

Dataset Information

0

Efficient water reduction with gallium phosphide nanowires.


ABSTRACT: Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires.

SUBMITTER: Standing A 

PROVIDER: S-EPMC4518318 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications


Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positi  ...[more]

Similar Datasets

| S-EPMC4901362 | biostudies-literature
| S-EPMC3624814 | biostudies-other
| S-EPMC7691993 | biostudies-literature
| S-EPMC7540345 | biostudies-literature
| S-EPMC9136762 | biostudies-literature
| S-EPMC5325541 | biostudies-literature