Unknown

Dataset Information

0

Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design.


ABSTRACT: Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (??F = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

SUBMITTER: Foller Larsen A 

PROVIDER: S-EPMC4530663 | biostudies-literature | 2015 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design.

Foller Larsen Anders A   Dumat Blaise B   Wranne Moa S MS   Lawson Christopher P CP   Preus Søren S   Bood Mattias M   Gradén Henrik H   Wilhelmsson L Marcus LM   Grøtli Morten M  

Scientific reports 20150731


Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and  ...[more]

Similar Datasets

| S-EPMC5934695 | biostudies-literature
| S-EPMC8322158 | biostudies-literature
| S-EPMC3904457 | biostudies-literature
| S-EPMC5743200 | biostudies-literature
| S-EPMC7453994 | biostudies-literature
| S-EPMC6146376 | biostudies-literature
| S-EPMC3527499 | biostudies-literature
| S-EPMC2531197 | biostudies-literature
| S-EPMC2490821 | biostudies-literature
| S-EPMC6814498 | biostudies-literature