Unknown

Dataset Information

0

Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk.


ABSTRACT: Genetic variation in DNA repair genes can modulate DNA repair capacity and may be related to cancer risk. However, study findings have been inconsistent. Inheritance of variant DNA repair genes is believed to influence individual susceptibility to the development of environmental cancer. Reliable knowledge on which the base excision repair (BER) sequence variants are associated with cancer risk would help elucidate the mechanism of cancer. Given that most of the previous studies had inadequate statistical power, we have conducted a systematic review on sequence variants in three important BER proteins. Here, we review published studies on the association between polymorphism in candidate BER genes and cancer risk. We focused on three key BER genes: 8-oxoguanine DNA glycosylase (OGG1), apurinic/apyrimidinic endonuclease (APE1/APEX1) and x-ray repair cross-complementing group 1 (XRCC1). These specific DNA repair genes were selected because of their critical role in maintaining genome integrity and, based on previous studies, suggesting that single-nucleotide polymorphisms (SNPs) in these genes have protective or deleterious effects on cancer risk. A total of 136 articles in the December 13, 2010 MEDLINE database (National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/pubmed/) reporting polymorphism in OGG1, XRCC1 or APE1 genes were analyzed. Many of the reported SNPs had diverse association with specific human cancers. For example, there was a positive association between the OGG1 Ser326Cys variant and gastric and lung cancer, while the XRCC1 Arg399Gln variant was associated with reduced cancer risk. Gene-environment interactions have been noted and may be important for colorectal and lung cancer risk and possibly other human cancers.

SUBMITTER: Karahalil B 

PROVIDER: S-EPMC4586256 | biostudies-literature | 2012 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk.

Karahalil B B   Bohr V A VA   Wilson D M DM  

Human & experimental toxicology 20120927 10


Genetic variation in DNA repair genes can modulate DNA repair capacity and may be related to cancer risk. However, study findings have been inconsistent. Inheritance of variant DNA repair genes is believed to influence individual susceptibility to the development of environmental cancer. Reliable knowledge on which the base excision repair (BER) sequence variants are associated with cancer risk would help elucidate the mechanism of cancer. Given that most of the previous studies had inadequate s  ...[more]

Similar Datasets

| S-EPMC3307187 | biostudies-literature
| S-EPMC4259949 | biostudies-literature
| S-EPMC3798558 | biostudies-literature
| S-EPMC8799111 | biostudies-literature
2023-11-08 | GSE166963 | GEO
| S-EPMC5509815 | biostudies-literature
| S-EPMC9375594 | biostudies-literature
| S-EPMC6085508 | biostudies-literature
| S-EPMC5859333 | biostudies-literature
| S-EPMC4773436 | biostudies-literature