Unknown

Dataset Information

0

Design Principles of Inert Substrates for Exploiting Gold Clusters' Intrinsic Catalytic Reactivity.


ABSTRACT: Ultralow stability of gold clusters prohibits the understanding of their intrinsic reactivity (that is vital for revealing the origin of gold's catalytic properties). Using density functional theory including many-body dispersion method, we aim to ascertain effective ways in exploiting gold clusters' intrinsic reactivity on carbon nanotubes (CNTs). We find that the many body van der Waals interactions are essential for gold clusters' reactivity on CNTs and even for O2 activation on these supported clusters. Furthermore, curvature and dopant of CNTs are found to qualitatively change the balance between physisorption and chemisorption for gold clusters on CNTs, determining the clusters' morphology, charge states, stability, and reactivity, which rationalize the experimental findings. Remarkably, N doped small curvature CNTs, which effectively stabilize gold clusters and retain their inherent geometric/electronic structures, can be promising candidates for exploiting gold clusters' intrinsic reactivity.

SUBMITTER: Gao W 

PROVIDER: S-EPMC4602230 | biostudies-literature | 2015 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Design Principles of Inert Substrates for Exploiting Gold Clusters' Intrinsic Catalytic Reactivity.

Gao Wang W   Ting Cui Ting T   Fu Zhu Yong Y   Wen Zi Z   Zhao Ming M   Chen Li Jian J   Jiang Qing Q  

Scientific reports 20151013


Ultralow stability of gold clusters prohibits the understanding of their intrinsic reactivity (that is vital for revealing the origin of gold's catalytic properties). Using density functional theory including many-body dispersion method, we aim to ascertain effective ways in exploiting gold clusters' intrinsic reactivity on carbon nanotubes (CNTs). We find that the many body van der Waals interactions are essential for gold clusters' reactivity on CNTs and even for O2 activation on these support  ...[more]

Similar Datasets

| S-EPMC5116099 | biostudies-literature
| S-EPMC7844850 | biostudies-literature
| S-EPMC5869313 | biostudies-literature
| S-EPMC7662783 | biostudies-literature
| S-EPMC9597593 | biostudies-literature
| S-EPMC6432649 | biostudies-literature
| S-EPMC6917850 | biostudies-literature
| S-EPMC8173136 | biostudies-literature
2020-04-16 | GSE122817 | GEO
| S-EPMC9992772 | biostudies-literature