Computational Analysis of Amiloride Analogue Inhibitors of Coxsackievirus B3 RNA Polymerase.
Ontology highlight
ABSTRACT: Coxsackievirus B3 (CVB3) is a picornavirus that is responsible for a significant proportion of human myocarditis. However, no antiviral treatment is currently available to treat this disease or indeed any picornaviral infections. Previously it was shown that amiloride and its derivative 5-(N-ethyl-N-isopropyl)amiloride inhibit the in vitro enzymatic activity of CVB3 RNA polymerase (3Dpol). Here we measure and compare the inhibitory activity of ten amiloride analogues against CVB3 3Dpol. We show that replacement of the 3,5-diaminopyrazinyl moiety of amiloride causes loss of the inhibitory activity, whereas modifications at the 5-amino and guanidino groups increase or decrease potency. Importantly, a combination of substitutions at both the 5-amino and guanidino groups produced a compound that was more potent than its singly modified precursors. The compounds were computationally-docked into available crystal structures of CVB3 3Dpol in order to obtain a structural explanation for the activities of the analogues. To create a robust model which explained the biological activity, optimization of one of the CVB3 3Dpol crystal structures to take into account active site flexibility was necessary, together with the use of consensus docking from two different docking algorithms. This robust predictive 3D atomic model provides insights into the interactions required for inhibitor binding and provides a promising basis for the development of more potent inhibitors against this important therapeutic target.
SUBMITTER: Holien JK
PROVIDER: S-EPMC4610404 | biostudies-literature | 2014
REPOSITORIES: biostudies-literature
ACCESS DATA