Unknown

Dataset Information

0

Temperature Effect on Ionic Current and ssDNA Transport through Nanopores.


ABSTRACT: We have investigated the role of electrostatic interactions in the transport of nucleic acids and ions through nanopores. The passage of DNA through nanopores has so far been conjectured to involve a free-energy barrier for entry, followed by a downhill translocation where the driving voltage accelerates the polymer. We have tested the validity of this conjecture by using two toxins, ?-hemolysin and aerolysin, which differ in their shape, size, and charge. The characteristic timescales in each toxin as a function of temperature show that the entry barrier is ?15 kBT and the translocation barrier is ?35 kBT, although the electrical force in the latter step is much stronger. Resolution of this fact, using a theoretical model, reveals that the attraction between DNA and the charges inside the barrel of the pore is the most dominant factor in determining the translocation speed and not merely the driving electrochemical potential gradient.

SUBMITTER: Payet L 

PROVIDER: S-EPMC4624348 | biostudies-literature | 2015 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Temperature Effect on Ionic Current and ssDNA Transport through Nanopores.

Payet Linda L   Martinho Marlène M   Merstorf Céline C   Pastoriza-Gallego Manuela M   Pelta Juan J   Viasnoff Virgile V   Auvray Loïc L   Muthukumar Murugappan M   Mathé Jérôme J  

Biophysical journal 20151001 8


We have investigated the role of electrostatic interactions in the transport of nucleic acids and ions through nanopores. The passage of DNA through nanopores has so far been conjectured to involve a free-energy barrier for entry, followed by a downhill translocation where the driving voltage accelerates the polymer. We have tested the validity of this conjecture by using two toxins, α-hemolysin and aerolysin, which differ in their shape, size, and charge. The characteristic timescales in each t  ...[more]

Similar Datasets

| S-EPMC2658614 | biostudies-literature
| S-EPMC4453161 | biostudies-literature
| S-EPMC5611827 | biostudies-literature
| S-EPMC5036142 | biostudies-other
| S-EPMC5340120 | biostudies-literature
| S-EPMC4729694 | biostudies-literature
| S-EPMC4503867 | biostudies-literature
| S-EPMC4676420 | biostudies-literature
| S-EPMC5221729 | biostudies-literature
| S-EPMC8291773 | biostudies-literature