Unknown

Dataset Information

0

Functional demonstrations of starch binding domains present in Ostreococcus tauri starch synthases isoforms.


ABSTRACT: Starch-binding domains are key modules present in several enzymes involved in polysaccharide metabolism. These non-catalytic modules have already been described as essential for starch-binding and the catalytic activity of starch synthase III from the higher plant Arabidopsis thaliana. In Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, there are three SSIII isoforms, known as Ostta SSIII-A, SSIII-B and SSIII-C.In this work, using in silico and in vitro characterization techniques, we have demonstrated that Ostta SSIII-A, SSIII-B and SSIII-C contain two, three and no starch-binding domains, respectively. Additionally, our phylogenetic analysis has indicated that OsttaSSIII-B, presenting three N-terminal SBDs, is the isoform more closely related to higher plant SSIII. Furthermore, the sequence alignment and homology modeling data gathered showed that both the main 3-D structures of all the modeled domains obtained and the main amino acid residues implicated in starch binding are well conserved in O. tauri SSIII starch-binding domains. In addition, adsorption assays showed that OsttaSSIII-A D2 and SSIII-B D2 domains are the two that make the greatest contribution to amylose and amylopectin binding, while OsttaSSIII-B D1 is also important for starch binding.The results presented here suggest that differences between OsttaSSIII-A and SSIII-B SBDs in the number of and binding of amino acid residues may produce differential affinities for each isoform to polysaccharides. Increasing the knowledge about SBDs may lead to their employment in biomedical and industrial applications.

SUBMITTER: Barchiesi J 

PROVIDER: S-EPMC4625611 | biostudies-literature | 2015

REPOSITORIES: biostudies-literature

altmetric image

Publications

Functional demonstrations of starch binding domains present in Ostreococcus tauri starch synthases isoforms.

Barchiesi Julieta J   Hedin Nicolás N   Gomez-Casati Diego F DF   Ballicora Miguel A MA   Busi María V MV  

BMC research notes 20151028


<h4>Background</h4>Starch-binding domains are key modules present in several enzymes involved in polysaccharide metabolism. These non-catalytic modules have already been described as essential for starch-binding and the catalytic activity of starch synthase III from the higher plant Arabidopsis thaliana. In Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, there are three SSIII isoforms, known as Ostta SSIII-A, SSIII-B and SSIII-C.<h4>Results</h4>In this work, using in s  ...[more]

Similar Datasets

| S-EPMC6210743 | biostudies-literature
2023-08-31 | GSE155535 | GEO
| PRJNA116365 | ENA
| S-EPMC4224133 | biostudies-literature
| S-EPMC6243121 | biostudies-literature
2019-05-04 | GSE114058 | GEO
| S-EPMC3762196 | biostudies-literature
| S-EPMC6562926 | biostudies-literature
| S-EPMC5082852 | biostudies-literature
| EMPIAR-10098 | biostudies-other