The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling.
Ontology highlight
ABSTRACT: Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1(mut/mut) patient with healthy MALT1(+/mut) family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway-first promoting activation via the CBM--then triggering HOIL1-dependent negative-feedback termination, preventing reactivation.
Project description:The human paracaspase MALT1 is a caspase homolog that plays a central role in NF-κB signaling. Over the past few years it has become clear that this is due to a combination of its scaffolding and proteolytic function. Knockout mice and mice expressing a catalytically dead variant of the protease have provided valuable information. This review aims to provide an overview of recent developments regarding the enzymatic mechanism and specificity of MALT1, its substrates discovered to date, different mouse models, as well as the role of MALT1 in NF-κB signaling downstream of a variety of different receptors.
Project description:Caspases are intracellular proteases that are best known for their function in apoptosis signaling. It has become evident that many caspases also function in other signaling pathways that propagate cell proliferation and inflammation, but studies on the inflammatory function of caspases have mainly been limited to caspase-1-mediated cytokine processing. Emerging evidence, however, indicates an important contribution of caspases as mediators or regulators of nuclear factor-κB (NF-κB) signaling, which plays a key role in inflammation and immunity. Much still needs to be learned about the mechanisms that govern the activation and regulation of NF-κB by caspases, and this review provides an update of this area. Whereas apoptosis signaling is dependent on the catalytic activity of caspases, they mainly act as scaffolding platforms for other signaling proteins in the case of NF-κB signaling. Caspase proteolytic activity, however, counteracts the pro-survival function of NF-κB by cleaving specific signaling molecules. A striking exception is the paracaspase mucosa-associated lymphoid tissue 1 (MALT1), whose adaptor and proteolytic activity are both needed to initiate a full blown NF-κB response in antigen-stimulated lymphocytes. Understanding the role of caspases and MALT1 in the regulation of NF-κB signaling is of high interest for therapeutic immunomodulation.
Project description:Caspase-8, an initiator caspase involved in lymphocyte apoptosis, is paradoxically required for lymphocyte proliferation. It is not understood how caspase-8 is controlled during antigenic signaling to allow for activation while averting the triggering of apoptosis. Here, we show that caspase-8 undergoes limited activation upon antigenic stimulation, and this activation is dependent on the paracaspase MALT1. The paracaspase domain of MALT1, in a protease-independent manner, induces caspase-8 activation through direct association. MALT1 diminishes the activation of apoptotic effector caspases, but it does not alter the activity of caspase-8 toward c-FLIP(L), which is required for antigenic signaling. Mutants of MALT1 that fail to activate caspase-8 and permit c-FLIP(L) cleavage cannot facilitate NF-kappaB activation or IL-2 induction. Our results reveal a mechanism that utilizes a protease potentially deadly to the cell for proliferative signaling and demonstrate a functional connection between the caspase and paracaspase families to enable nonapoptotic processes.
Project description:The linear ubiquitin chain assembly complex (LUBAC) regulates NF-?B activation by modifying proteins with linear (M1-linked) ubiquitination chains. Although LUBAC also regulates the apoptosis pathway, the precise mechanism by which LUBAC regulates apoptosis remains not fully defined. Here, we report that LUBAC-mediated M1-linked ubiquitination of cellular FLICE-like inhibitory protein (cFLIP), an anti-apoptotic molecule, contributes to tumor necrosis factor (TNF) ?-induced apoptosis. We found that deficiency of RNF31, the catalytic subunit of the LUBAC complex, promoted cFLIP degradation in a proteasome-dependent manner. Moreover, we observed RNF31 directly interact with cFLIP, and LUBAC further conjugated M1-linked ubiquitination chains at Lys-351 and Lys-353 of cFLIP to stabilize cFLIP, thereby protecting cells from TNF?-induced apoptosis. Together, our study identifies a new substrate of LUBAC and reveals a new molecular mechanism through which LUBAC regulates TNF?-induced apoptosis via M1-linked ubiquitination.
Project description:The human paracaspase mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) plays a central role in nuclear factor-?B (NF-?B) signaling as both a protease and scaffolding protein. Knocking out MALT1 leads to impaired NF-?B signaling and failure to mount an effective immune response. However, it is unclear to which degree it is the scaffolding function versus the proteolytic activity of MALT1 that is essential. Previous work involving a MALT1 inhibitor with low selectivity suggests that the enzymatic function plays an important role in different cell lines. To help elucidate this proteolytic role of MALT1, we have designed activity-based probes that inhibit its proteolytic activity. The probes selectively label active enzyme and can be used to inhibit MALT1 and trace its activity profile, helping to create a better picture of the significance of the proteolytic function of MALT1.
Project description:The linear ubiquitin chain assembly complex (LUBAC) plays a crucial role in activating the canonical NF-κB pathway, which is important for B-cell development and function. Here, we describe a mouse model (B-HOIP(Δlinear)) in which the linear polyubiquitination activity of LUBAC is specifically ablated in B cells. Canonical NF-κB and ERK activation, mediated by the tumour necrosis factor (TNF) receptor superfamily receptors CD40 and TACI, was impaired in B cells from B-HOIP(Δlinear) mice due to defective activation of the IKK complex; however, B-cell receptor (BCR)-mediated activation of the NF-κB and ERK pathways was unaffected. B-HOIP(Δlinear) mice show impaired B1-cell development and defective antibody responses to thymus-dependent and thymus-independent II antigens. Taken together, these data suggest that LUBAC-mediated linear polyubiquitination is essential for B-cell development and activation, possibly via canonical NF-κB and ERK activation induced by the TNF receptor superfamily, but not by the BCR.
Project description:Mutations in CARD14 have recently been linked to psoriasis susceptibility. CARD14 is an epidermal regulator of NF-κB activation. However, the ability of CARD14 to activate other signaling pathways as well as the biochemical mechanisms that mediate and regulate its function remain to be determined. Here, we report that in addition to NF-κB signaling, CARD14 activates p38 and JNK MAP kinase pathways, all of which are dependent on the paracaspase MALT1. Mechanistically, we demonstrate that CARD14 physically interacts with paracaspase MALT1 and activates MALT1 proteolytic activity and inflammatory gene expression, which are enhanced by psoriasis-associated CARD14 mutations. Moreover, we show that MALT1 deficiency or pharmacological inhibition of MALT1 catalytic activity inhibits pathogenic mutant CARD14-induced cytokine and chemokine expression in human primary keratinocytes. Collectively, our findings demonstrate a novel role for MALT1 in CARD14-induced signaling and indicate MALT1 as a valuable therapeutic target in psoriasis.
Project description:Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a unique paracaspase protein whose protease activity mediates oncogenic NF-κB signalling in activated B cell-like diffuse large B cell lymphomas (ABC-DLBCLs). ABC-DLBCLs are aggressive lymphomas with high resistance to current chemotherapies. Low survival rate among patients emphasizes the urgent need for alternative treatment options. The characterization of the MALT1 will be an essential tool for developing new target-directed drugs against MALT1 dependent disorders. As the first step in the atomic-level NMR studies of the system, here we report, the (15)N/(13)C/(1)H backbone assignment of the apo form of the MALT1 paracaspase region together with the third immunoglobulin-like (Ig3) domain, 44 kDa, by high resolution NMR. In addition, the non-uniform sampling (NUS) based targeted acquisition procedure is evaluated as a mean of decreasing acquisition and analysis time for larger proteins.
Project description:Estrogen receptor-negative (ER-negative) breast cancer is thought to be more malignant and devastating than ER-positive breast cancer. ER-negative breast cancer exhibits elevated NF-κB activity, but how this abnormally high NF-κB activity is maintained is poorly understood. The importance of linear ubiquitination, which is generated by the linear ubiquitin chain assembly complex (LUBAC), is increasingly appreciated in NF-κB signaling, which regulates cell activation and death. Here, we showed that epsin proteins, a family of ubiquitin-binding endocytic adaptors, interacted with LUBAC via its ubiquitin-interacting motif and bound LUBAC's bona fide substrate NEMO via its N-terminal homolog (ENTH) domain. Furthermore, epsins promoted NF-κB essential modulator (NEMO) linear ubiquitination and served as scaffolds for recruiting other components of the IκB kinase (IKK) complex, resulting in the heightened IKK activation and sustained NF-κB signaling essential for the development of ER-negative breast cancer. Heightened epsin levels in ER-negative human breast cancer are associated with poor relapse-free survival. We showed that transgenic and pharmacological approaches eliminating epsins potently impeded breast cancer development in both spontaneous and patient-derived xenograft breast cancer mouse models. Our findings established the pivotal role epsins played in promoting breast cancer. Thus, targeting epsins may represent a strategy to restrain NF-κB signaling and provide an important perspective into ER-negative breast cancer treatment.
Project description:Glioblastoma is one of the most lethal forms of adult cancer with a median survival of around 15 months. A potential treatment strategy involves targeting glioblastoma stem-like cells (GSC), which constitute a cell autonomous reservoir of aberrant cells able to initiate, maintain, and repopulate the tumor mass. Here, we report that the expression of the paracaspase mucosa-associated lymphoid tissue l (MALT1), a protease previously linked to antigen receptor-mediated NF-?B activation and B-cell lymphoma survival, inversely correlates with patient probability of survival. The knockdown of MALT1 largely impaired the expansion of patient-derived stem-like cells in vitro, and this could be recapitulated with pharmacological inhibitors, in vitro and in vivo. Blocking MALT1 protease activity increases the endo-lysosome abundance, impairs autophagic flux, and culminates in lysosomal-mediated cell death, concomitantly with mTOR inactivation and dispersion from endo-lysosomes. These findings place MALT1 as a new druggable target involved in glioblastoma and unveil ways to modulate the homeostasis of endo-lysosomes.