Project description:Telomeres are nucleoprotein complexes at the ends of linear chromosomes in eukaryotes, and are essential in preventing chromosome termini from being recognized as broken DNA ends. Telomere shortening has been linked to cellular senescence and human aging, with oxidative stress as a major contributing factor. 7,8-Dihydro-8-oxogaunine (8-oxodG) is one of the most abundant oxidative guanine lesions, and 8-oxoguanine DNA glycosylase (OGG1) is involved in its removal. In this study, we examined if telomeric DNA is particularly susceptible to oxidative base damage and if telomere-specific factors affect the incision of oxidized guanines by OGG1. We demonstrated that telomeric TTAGGG repeats were more prone to oxidative base damage and repaired less efficiently than non-telomeric TG repeats in vivo. We also showed that the 8-oxodG-incision activity of OGG1 is similar in telomeric and non-telomeric double-stranded substrates. In addition, telomere repeat binding factors TRF1 and TRF2 do not impair OGG1 incision activity. Yet, 8-oxodG in some telomere structures (e.g., fork-opening, 3'-overhang, and D-loop) were less effectively excised by OGG1, depending upon its position in these substrates. Collectively, our data indicate that the sequence context of telomere repeats and certain telomere configurations may contribute to telomere vulnerability to oxidative DNA damage processing.
Project description:DNA damage contributes to brain aging and neurodegenerative diseases. However, the factors stimulating DNA repair to stave off functional decline remain obscure. We show that HDAC1 modulates OGG1-initated 8-oxoguanine (8-oxoG) repair in the brain. HDAC1-deficient mice display age-associated DNA damage accumulation and cognitive impairment. HDAC1 stimulates OGG1, a DNA glycosylase known to remove 8-oxoG lesions that are associated with transcriptional repression. HDAC1 deficiency causes impaired OGG1 activity, 8-oxoG accumulation at the promoters of genes critical for brain function, and transcriptional repression. Moreover, we observe elevated 8-oxoG along with reduced HDAC1 activity and downregulation of a similar gene set in the 5XFAD mouse model of Alzheimer's disease. Notably, pharmacological activation of HDAC1 alleviates the deleterious effects of 8-oxoG in aged wild-type and 5XFAD mice. Our work uncovers important roles for HDAC1 in 8-oxoG repair and highlights the therapeutic potential of HDAC1 activation to counter functional decline in brain aging and neurodegeneration.
Project description:Unrepaired DNA damage contributes to brain aging and neurodegenerative diseases. However, the factors stimulating DNA repair activity to stave off age-associated functional decline remain obscure. Here, we show that histone deacetylase 1 (HDAC1) modulates DNA repair in the aging brain via targeting OGG1 of the base excision repair pathway. Mice deficient in HDAC1 display age-associated accumulation of DNA damage in the brain and cognitive impairment. HDAC1 interacts with and positively stimulates OGG1, a DNA glycosylase that primarily acts on 8-oxoguanine (8-oxoG), a type of oxidative DNA damage associated with transcriptional repression. Loss of HDAC1 leads to impaired OGG1 activity, 8-oxoG accumulation at the promoters of a subset of genes critical for brain function, and transcriptional repression. Moreover, we observe elevated 8-oxoG lesions along with reduced HDAC1 activity and downregulation of a similar set genes in the 5XFAD mouse model of Alzheimer’s disease (AD). Notably, pharmacological activation of HDAC1 confers protection against the deleterious effects of 8-oxoG lesions in the brains of aged wild-type and 5XFAD mice. Our work uncovers an important role for HDAC1 in the repair of 8-oxoG lesions and highlights HDAC1 activation as a novel therapeutic strategy to counter functional decline during brain aging and neurodegeneration.
Project description:The most common oxidative DNA lesion is 8-oxoguanine which is mainly recognized and excised by the 8-oxoG DNA glycosylase 1 (OGG1), initiating the base excision repair (BER) pathway. Telomeres are particularly sensitive to oxidative stress (OS) which disrupts telomere homeostasis triggering genome instability. In the present study, we have investigated the effects of inactivating BER in OS conditions, by using a specific inhibitor of OGG1 (TH5487). We have found that in OS conditions, TH5487 blocks BER initiation at telomeres causing an accumulation of oxidized bases, that is correlated with telomere losses, micronuclei formation and mild proliferation defects. Moreover, the antimetabolite methotrexate synergizes with TH5487 through induction of intracellular reactive oxygen species (ROS) formation, which potentiates TH5487-mediated telomere and genome instability. Our findings demonstrate that OGG1 is required to protect telomeres from OS and present OGG1 inhibitors as a tool to induce oxidative DNA damage at telomeres, with the potential for developing new combination therapies for cancer treatment.
Project description:BackgroundA compromised base excision repair (BER) promotes carcinogenesis by accumulating oxidative DNA-damaged products as observed in MUTYH-associated polyposis, a hereditary colorectal cancer syndrome marked by adenomas and cancers with an accumulation of 8-oxoguanine. Remarkably, DNA global demethylation has been shown to be mediated by BER, suggesting a relevant interplay with early colorectal tumourigenesis. To check this hypothesis, we investigated a cohort of 49 adenomas and 10 carcinomas, derived from 17 MUTYH-associated polyposis patients; as adenoma controls, we used a set of 36 familial adenomatous polyposis and 24 sporadic polyps.MethodsSamples were analysed for their mutational and epigenetic status, measured as global LINE-1 (long interspersed nuclear element) and gene-specific LINE-1 MET methylation by mass spectrometry and pyrosequencing.ResultsMUTYH-associated polyposis adenomas were strikingly more hypomethylated than familial adenomatous and sporadic polyps for both DNA demethylation markers (P=0.032 and P=0.007 for LINE-1; P=0.004 and P<0.0001 for LINE-1 MET, respectively) with levels comparable to those of the carcinomas derived from the same patients. They also had mutations due mainly to KRAS/NRAS p.G12C, which was absent in the controls (P<0.0001 for both sets).ConclusionsOur results show that DNA demethylation, together with specific KRAS/NRAS mutations, drives the early steps of oxidative damage colorectal tumourigenesis.
Project description:BackgroundThis study aimed to analyze the expression of 8-oxoguanine DNA glycosylase (OGG1) in patients with hepatocellular carcinoma (HCC) and its effect on prognosis by bioinformatics techniques and to determine its possible carcinogenic mechanism through data mining.MethodsThe difference in OGG1 expression between healthy people and HCC patients was searched and analyzed by TCGA and GEO databases, and the effect of OGG1 on prognosis was judged by survival analysis. Meanwhile, the possible molecular mechanism of OGG1 in the tumorigenesis and development of HCC was explored by GO analysis, KEGG analysis, immune infiltration analysis, protein-protein interaction network, promoter methylation analysis, and so forth. Quantitative polymerase chain reaction (qPCR) was used to examine the gene expression in 36 pairs of HCC tissues and adjacent tissues.ResultsThe expression of OGG1 in HCC patients was higher than that in healthy people, and the overexpression of OGG1 might stimulate cell proliferation by increasing the activity of cell cycle-related proteins.ConclusionThe alteration of OGG1 was significantly correlated with the tumorigenesis and development of HCC. OGG1 is expected to be a new biomarker for evaluating the prognosis of HCC and a new target for the treatment of HCC.
Project description:mtDNA damage in cardiac myocytes resulting from increased oxidative stress is emerging as an important factor in the pathogenesis of diabetic cardiomyopathy. A prevalent lesion that occurs in mtDNA damage is the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), which can cause mutations when not repaired properly by 8-oxoguanine DNA glycosylase (Ogg1). Although the mtDNA repair machinery has been described in cardiac myocytes, the regulation of this repair has been incompletely investigated. Here we report that the hearts of type 1 diabetic mice, despite having increased Ogg1 protein levels, had significantly lower Ogg1 activity than the hearts of control, non-type 1 diabetic mice. In diabetic hearts, we further observed increased levels of 8-OHdG and an increased amount of mtDNA damage. Interestingly, Ogg1 was found to be highly O-GlcNAcylated in diabetic mice compared with controls. In vitro experiments demonstrated that O-GlcNAcylation inhibits Ogg1 activity, which could explain the mtDNA lesion accumulation observed in vivo Reducing Ogg1 O-GlcNAcylation in vivo by introducing a dominant negative O-GlcNAc transferase mutant (F460A) restored Ogg1 enzymatic activity and, consequently, reduced 8-OHdG and mtDNA damage despite the adverse hyperglycemic milieu. Taken together, our results implicate hyperglycemia-induced O-GlcNAcylation of Ogg1 in increased mtDNA damage and, therefore, provide a new plausible biochemical mechanism for diabetic cardiomyopathy.
Project description:Reactive oxygen species (ROS) have emerged as important cellular-signaling agents for cellular survival. Herein, we demonstrate that ROS-mediated oxidation of DNA to yield 8-oxo-7,8-dihydroguanine (OG) in gene promoters is a signaling agent for gene activation. Enhanced gene expression occurs when OG is formed in guanine-rich, potential G-quadruplex-forming sequences (PQS) in promoter-coding strands, initiating base excision repair (BER) by 8-oxoguanine DNA glycosylase (OGG1), yielding an abasic site (AP). The AP enables melting of the duplex to unmask the PQS, adopting a G-quadruplex fold in which apurinic/apyrimidinic endonuclease 1 (APE1) binds, but inefficiently cleaves, the AP for activation of vascular endothelial growth factor (VEGF) or endonuclease III-like protein 1 (NTHL1) genes. These details were mapped via synthesis of OG and AP analogs at single-nucleotide precision within the promoter of a luciferase reporter system. The reporters were analyzed in human and mouse cells while selectively knocking out or down critical BER proteins to identify the impact on luciferase expression. Identification of the oxidatively modified DNA base OG to guide BER activity in a gene promoter and impact cellular phenotype ascribes an epigenetic role to OG.
Project description:Oxidative stress-induced DNA damage has been well acknowledged as a major cause leading to cell death, which is etiologically linked to ischemic injury and degenerative alterations. The most common oxidation product of DNA is base lesion 8-oxo-7,8-dihydroguanine (8-oxoG), which is repaired by 8-oxoG glycosylase1 (OGG1)-initiated baseexcision repair (BER) pathway (OGG1-BER); however, the role of OGG1-BER in oxidative stress-induced cell death is poorly investigated. DNA strand breaks and apurinic/apyrimidinic (AP) sites are effective substrates to activate DNA damage sensor poly(ADP-ribose) polymerase 1 (PARP1). Overactivation of PARP1 is associated with apoptosis-inducing factor (AIF)-mediated and caspase-independent cell death (parthanatos). We hypothesized that after an excessive oxidative insult, OGG1-BER-generated strand breaks result in hyperactivation of PARP1 and consequently cell death. To test, wild type, knockout, siRNA-depleted MEFs and neuroblastoma cells, or those expressing repair-deficient OGG1 mutants were oxidatively stressed and the role of OGG1 was examined. Results showed that OGG1-BER further increases the levels of ROS-induced DNA damage by generating repair intermediates, leading to PARP1 overactivation and cell death. Cells lacking or expressing repair-deficient OGG1 showed lower levels of DNA strand lesions, PARP1 activation, and nuclear translocation of apoptosis-inducing factor, resulting in the increased resistance to ROS-induced parthanatos. These results suggested that OGG1 guards genome integrity through either lesion repair or elimination of cells with malignant potential, to maintain the homeostasis of the host, which might depend on the magnitude of guanine oxidation.
Project description:BackgroundColorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Studies have shown that the DNA damage response (DDR) mutation is strongly associated with microsatellite instability (MSI) status and is an indication for patients with CRCs receiving immune checkpoint inhibitor (ICI) treatment. However, DDR mutation in microsatellite stable (MSS) CRC remains unclear.MethodsIn this study, Fisher's exact test, Student'st-test, Wilcoxon rank-sum test and Cox proportional hazards regression model were performed, and a p value of < 0.05 was considered statistically significant.ResultsThe most common gene alterations were APC (77%), TP53 (73%), KRAS (48%), and PIK3CA (25%). The mutationfrequency of APC and TP53 in left-sided CRC was significantly higher than that for right-sided CRC, while the mutation frequency of PIK3CA, ACVR2A, FAT4, and RNF43 in right-sided CRC was significantly higher than that for left-sided CRC. DDR mutations occurred in100% of MSI CRCs and in 83.77% of MSS CRCs, with the most frequently mutated DDR genes being ARID1A (7.5%), ATM (5.7%,) and BRCA2 (2.6%). When right- and left-sided CRCs were compared, no significant difference was observed for DDR genes and pathways. A survival analysis indicated that the DDR mutation was not associated with overall survival (OS) in MSS CRCs, while left-sided patients with homologous recombination repair (HRR) pathway mutations had a significantly prolonged OS compared with right-sided CRCs.ConclusionsHere, we found that stage and grade were statistically significant independent prognostic factors in the left-sided CRC and the right-sided CRC, recommending treatment for these patients stratified by stage. For the future, utilizing DDR gene defects for expanding treatment options and improving prognosis is an issue worth exploring.