Unknown

Dataset Information

0

A Bayesian nonlinear mixed-effects disease progression model.


ABSTRACT: A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method that does not consider random-effects from age. Using the developed models, we obtain not only age-specific individual-level distributions, but also population-level distributions of sensitivity, sojourn time and transition probability.

SUBMITTER: Kim S 

PROVIDER: S-EPMC4718583 | biostudies-literature | 2015 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Bayesian nonlinear mixed-effects disease progression model.

Kim Seongho S   Jang Hyejeong H   Wu Dongfeng D   Abrams Judith J  

Journal of biometrics & biostatistics 20151230 5


A nonlinear mixed-effects approach is developed for disease progression models that incorporate variation in age in a Bayesian framework. We further generalize the probability model for sensitivity to depend on age at diagnosis, time spent in the preclinical state and sojourn time. The developed models are then applied to the Johns Hopkins Lung Project data and the Health Insurance Plan for Greater New York data using Bayesian Markov chain Monte Carlo and are compared with the estimation method  ...[more]

Similar Datasets

| S-EPMC5790569 | biostudies-literature
| S-EPMC6800615 | biostudies-literature
| S-EPMC6234901 | biostudies-other
| S-EPMC11318863 | biostudies-literature
| S-EPMC3897249 | biostudies-literature
| S-EPMC7644099 | biostudies-literature
| S-EPMC4575256 | biostudies-literature
| S-EPMC3460696 | biostudies-literature
| S-EPMC3668859 | biostudies-literature
| S-EPMC6436945 | biostudies-literature