Unknown

Dataset Information

0

Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films.


ABSTRACT: Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films. In this paper, the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT and PEDOT-co-1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene (EPh) were studied. The estimated Young's modulus of the PEDOT films was 2.6±1.4GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56±27MPa. The effective interfacial shear strength was estimated with a shear-lag model by measuring the crack spacing as a function of film thickness. For PEDOT on gold/palladium-coated hydrocarbon film substrates an interfacial shear strength of 0.7±0.3MPa was determined. The addition of 5mole% of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283±67MPa, while the strain to failure remained about the same (2%). The effective interfacial shear strength was increased to 2.4±0.6MPa.This paper describes methods for estimating the ultimate mechanical properties of electrochemically deposited conjugated polymer (here PEDOT and PEDOT copolymers) films. Of particular interest and novelty is our implementation of a cracking test to quantify the shear strength of the PEDOT thin films on these solid substrates. There is considerable interest in these materials as interfaces between biomedical devices and living tissue, however potential mechanisms and modes of failure are areas of continuing concern, and establishing methods to quantify the strengths of these interfaces are therefore of particular current interest. We are confident that these results will be useful to the broader biological materials community and are worthy of broader dissemination.

SUBMITTER: Qu J 

PROVIDER: S-EPMC4728054 | biostudies-literature | 2016 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films.

Qu Jing J   Ouyang Liangqi L   Kuo Chin-Chen CC   Martin David C DC  

Acta biomaterialia 20151201


Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films. In this paper, the stiffness, strength and the interfacial shear strength  ...[more]

Similar Datasets

| S-EPMC6412732 | biostudies-literature
| S-EPMC6300310 | biostudies-literature
| S-EPMC6587155 | biostudies-literature
| S-EPMC5459149 | biostudies-other
| S-EPMC7578806 | biostudies-literature
| S-EPMC6432597 | biostudies-literature
| S-EPMC4678513 | biostudies-literature
| S-EPMC9080771 | biostudies-literature
| S-EPMC7672091 | biostudies-literature
| S-EPMC7023451 | biostudies-literature