Project description:GCH1 encodes the enzyme guanosine triphospahte (GTP) cyclohydrolase 1, essential for dopamine synthesis in nigrostriatal cells, and rare mutations in GCH1 may lead to Dopa-responsive dystonia (DRD). While GCH1 is implicated in genomewide association studies in Parkinson's disease (PD), only a few studies examined the role of rare GCH1 variants in PD, with conflicting results. In the present study, GCH1 and its 5' and 3' untranslated regions were sequenced in 1113 patients with PD and 1111 controls. To examine the association of rare GCH1 variants with PD, burden analysis was performed. Three rare GCH1 variants, which were previously reported to be pathogenic in DRD, were found in five patients with PD and not in controls (sequence Kernel association test, p = 0.024). A common haplotype, tagged by rs841, was associated with a reduced risk for PD (OR = 0.71, 95% CI = 0.61-0.83, p = 1.24 × 10-4), and with increased GCH1 expression in brain regions relevant for PD (www.gtexportal.org). Our results support a role for rare, DRD-related variants, and common GCH1 variants in the pathogenesis of PD.
Project description:The melanocortin 1 receptor gene (MC1R) expressed in melanocytes is a major determinant of skin pigmentation. It encodes a Gs protein-coupled receptor activated by ?-melanocyte stimulating hormone (?MSH). Human MC1R has an inefficient poly(A) site allowing intergenic splicing with its downstream neighbour Tubulin-?-III (TUBB3). Intergenic splicing produces two MC1R isoforms, designated Iso1 and Iso2, bearing the complete seven transmembrane helices from MC1R fused to TUBB3-derived C-terminal extensions, in-frame for Iso1 and out-of-frame for Iso2. It has been reported that exposure to ultraviolet radiation (UVR) might promote an isoform switch from canonical MC1R (MC1R-001) to the MC1R-TUBB3 chimeras, which might lead to novel phenotypes required for tanning. We expressed the Flag epitope-tagged intergenic isoforms in heterologous HEK293T cells and human melanoma cells, for functional characterization. Iso1 was expressed with the expected size. Iso2 yielded a doublet of Mr significantly lower than predicted, and impaired intracellular stability. Although Iso1- and Iso2 bound radiolabelled agonist with the same affinity as MC1R-001, their plasma membrane expression was strongly reduced. Decreased surface expression mostly resulted from aberrant forward trafficking, rather than high rates of endocytosis. Functional coupling of both isoforms to cAMP was lower than wild-type, but ERK activation upon binding of ?MSH was unimpaired, suggesting imbalanced signaling from the splice variants. Heterodimerization of differentially labelled MC1R-001 with the splicing isoforms analyzed by co-immunoprecipitation was efficient and caused decreased surface expression of binding sites. Thus, UVR-induced MC1R isoforms might contribute to fine-tune the tanning response by modulating MC1R-001 availability and functional parameters.
Project description:Approximately 20 % of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset PD to identify 15 potentially causal variants. Segregation analysis and frequency assessment in 862 PD cases and 1,014 ethnically matched controls highlighted variants in EEF1D and LRRK1 as the best candidates. Mutation screening of the coding regions of these genes in 862 cases and 1,014 controls revealed several novel non-synonymous variants in both genes in cases and controls. An in silico multi-model bioinformatics analysis was used to prioritize identified variants in LRRK1 for functional follow-up. However, protein expression, subcellular localization, and cell viability were not affected by the identified variants. Although it has yet to be proven conclusively that variants in LRRK1 are indeed causative of PD, our data strengthen a possible role for LRRK1 in addition to LRRK2 in the genetic underpinnings of PD but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.
Project description:Approximately 20% of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset familial PD followed by frequency assessment in 975 PD cases and 1014 ethnically-matched controls and linkage analysis to identify potentially causal variants. Based on the predicted penetrance and the frequencies, a variant in PLXNA4 proved to be the best candidate and PLXNA4 was screened for additional variants in 862 PD cases and 940 controls, revealing an excess of rare non-synonymous coding variants in PLXNA4 in individuals with PD. Although we cannot conclude that the variant in PLXNA4 is indeed the causative variant, these findings are interesting in the light of a surfacing role of axonal guidance mechanisms in neurodegenerative disorders but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.
Project description:Several studies have been conducted with mixed results since our initial report of increased Parkinson's disease risk in individuals with red hair and/or red hair-associated p.R151C variant of the MC1R gene, both of which confer high melanoma risk. We performed a meta-analysis of six publications on red hair, MC1R, and Parkinson's disease. We found that red hair (pooled odds ratios = 1.68, 95% confidence intervals: 1.07, 2.64) and p.R151C (pooled odds ratios = 1.10, 95% confidence intervals: 1.00, 1.21), but not p.R160W, were associated with greater risk for Parkinson's disease. Our results support potential roles of pigmentation and its key regulator MC1R in the pathogenesis of Parkinson's disease.
Project description:Rare variants in the beta-glucocerebrosidase gene (GBA1) are common genetic risk factors for alpha synucleinopathy, which often manifests clinically as GBA-associated Parkinson's disease (GBA-PD). Clinically, GBA-PD closely mimics idiopathic PD, but it may present at a younger age and often aggregates in families. Most carriers of GBA variants are, however, asymptomatic. Moreover, symptomatic PD patients without GBA variant have been reported in families with seemingly GBA-PD. These observations obscure the link between GBA variants and PD pathogenesis and point towards a role for unidentified additional genetic and/or environmental risk factors or second hits in GBA-PD. In this study, we explored whether rare genetic variants may be additional risk factors for PD in two families segregating the PD-associated GBA1 variants c.115+1G>A (ClinVar ID: 93445) and p.L444P (ClinVar ID: 4288). Our analysis identified rare genetic variants of the HSP70 co-chaperone DnaJ homolog subfamily B member 6 (DNAJB6) and lysosomal protein prosaposin (PSAP) as additional factors possibly influencing PD risk in the two families. In comparison to the wild-type proteins, variant DNAJB6 and PSAP proteins show altered functions in the context of cellular alpha-synuclein homeostasis when expressed in reporter cells. Furthermore, the segregation pattern of the rare variants in the genes encoding DNAJB6 and PSAP indicated a possible association with PD in the respective families. The occurrence of second hits or additional PD cosegregating rare variants has important implications for genetic counseling in PD families with GBA1 variant carriers and for the selection of PD patients for GBA targeted treatments.
Project description:BackgroundGenome-wide association studies have been successful in identifying common genetic variants for human diseases. However, much of the heritable variation associated with diseases such as Parkinson's disease remains unknown suggesting that many more risk loci are yet to be identified. Rare variants have become important in disease association studies for explaining missing heritability. Methods for detecting this type of association require prior knowledge on candidate genes and combining variants within the region. These methods may suffer from power loss in situations with many neutral variants or causal variants with opposite effects.ResultsWe propose a method capable of scanning genetic variants to identify the region most likely harbouring disease gene with rare and/or common causal variants. Our method assigns a score at each individual variant based on our scoring system. It uses aggregate scores to identify the region with disease association. We evaluate performance by simulation based on 1000 Genomes sequencing data and compare with three commonly used methods. We use a Parkinson's disease case-control dataset as a model to demonstrate the application of our method. Our method has better power than CMC and WSS and similar power to SKAT-O with well-controlled type I error under simulation based on 1000 Genomes sequencing data. In real data analysis, we confirm the association of α-synuclein gene (SNCA) with Parkinson's disease (p = 0.005). We further identify association with hyaluronan synthase 2 (HAS2, p = 0.028) and kringle containing transmembrane protein 1 (KREMEN1, p = 0.006). KREMEN1 is associated with Wnt signalling pathway which has been shown to play an important role for neurodegeneration in Parkinson's disease.ConclusionsOur method is time efficient and less sensitive to inclusion of neutral variants and direction effect of causal variants. It can narrow down a genomic region or a chromosome to a disease associated region. Using Parkinson's disease as a model, our method not only confirms association for a known gene but also identifies two genes previously found by other studies. In spite of many existing methods, we conclude that our method serves as an efficient alternative for exploring genomic data containing both rare and common variants.
Project description:Many individuals with Parkinson's disease (PD) develop cognitive deficits, and a phenotypic and molecular overlap between neurodegenerative diseases exists. We investigated the contribution of rare variants in seven genes of known relevance to dementias (?-amyloid precursor protein (APP), PSEN1/2, MAPT (microtubule-associated protein tau), fused in sarcoma (FUS), granulin (GRN) and TAR DNA-binding protein 43 (TDP-43)) to PD and PD plus dementia (PD+D) in a discovery sample of 376 individuals with PD and followed by the genotyping of 25 out of the 27 identified variants with a minor allele frequency <5% in 975 individuals with PD, 93 cases with Lewy body disease on neuropathological examination, 613 individuals with Alzheimer's disease (AD), 182 cases with frontotemporal dementia and 1014 general population controls. Variants identified in APP were functionally followed up by A? mass spectrometry in transiently transfected HEK293 cells. PD+D cases harbored more rare variants across all the seven genes than PD individuals without dementia, and rare variants in APP were more common in PD cases overall than in either the AD cases or controls. When additional controls from publically available databases were added, one rare variant in APP (c.1795G>A(p.(E599K))) was significantly associated with the PD phenotype but was not found in either the PD cases or controls of an independent replication sample. One of the identified rare variants (c.2125G>A (p.(G709S))) shifted the A? spectrum from A?40 to A?39 and A?37. Although the precise mechanism remains to be elucidated, our data suggest a possible role for APP in modifying the PD phenotype as well as a general contribution of genetic factors to the development of dementia in individuals with PD.
Project description:Although many rare variants have been reportedly associated with Parkinson's disease (PD), many have not been replicated or have failed to replicate. Here, we conduct a large-scale replication of rare PD variants. We assessed a total of 27,590 PD cases, 6701 PD proxies, and 3,106,080 controls from three data sets: 23andMe, Inc., UK Biobank, and AMP-PD. Based on well-known PD genes, 834 variants of interest were selected from the ClinVar annotated 23andMe dataset. We performed a meta-analysis using summary statistics of all three studies. The meta-analysis resulted in five significant variants after Bonferroni correction, including variants in GBA1 and LRRK2. Another eight variants are strong candidate variants for their association with PD. Here, we provide the largest rare variant meta-analysis to date, providing information on confirmed and newly identified variants for their association with PD using several large databases. Additionally we also show the complexities of studying rare variants in large-scale cohorts.