Unknown

Dataset Information

0

Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis.


ABSTRACT: Radiotherapy is a fundamental part of cancer treatment but its use is limited by the onset of late adverse effects in the normal tissue, especially radiation-induced fibrosis. Since the molecular causes for fibrosis are largely unknown, we analyse if epigenetic regulation might explain inter-individual differences in fibrosis risk. DNA methylation profiling of dermal fibroblasts obtained from breast cancer patients prior to irradiation identifies differences associated with fibrosis. One region is characterized as a differentially methylated enhancer of diacylglycerol kinase alpha (DGKA). Decreased DNA methylation at this enhancer enables recruitment of the profibrotic transcription factor early growth response 1 (EGR1) and facilitates radiation-induced DGKA transcription in cells from patients later developing fibrosis. Conversely, inhibition of DGKA has pronounced effects on diacylglycerol-mediated lipid homeostasis and reduces profibrotic fibroblast activation. Collectively, DGKA is an epigenetically deregulated kinase involved in radiation response and may serve as a marker and therapeutic target for personalized radiotherapy.

SUBMITTER: Weigel C 

PROVIDER: S-EPMC4792958 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8158145 | biostudies-literature
| S-EPMC7235333 | biostudies-literature
| S-EPMC3457341 | biostudies-literature
| S-EPMC3221890 | biostudies-literature
| S-EPMC3864584 | biostudies-literature
| S-EPMC4689489 | biostudies-literature
| S-EPMC8292318 | biostudies-literature
| S-EPMC8603347 | biostudies-literature
| S-EPMC6423725 | biostudies-literature
| S-EPMC4259432 | biostudies-literature