Unknown

Dataset Information

0

Mapping the O-Mannose Glycoproteome in Saccharomyces cerevisiae.


ABSTRACT: O-Mannosylation is a vital protein modification conserved from fungi to humans. Yeast is a perfect model to study this post-translational modification, because in contrast to mammalsO-mannosylation is the only type ofO-glycosylation. In an essential step toward the full understanding of proteinO-mannosylation we mapped theO-mannose glycoproteome in baker's yeast. Taking advantage of anO-glycan elongation deficient yeast strain to simplify sample complexity, we identified over 500O-glycoproteins from all subcellular compartments for which over 2300O-mannosylation sites were mapped by electron-transfer dissociation (ETD)-based MS/MS. In this study, we focus on the 293O-glycoproteins (over 1900 glycosylation sites identified by ETD-MS/MS) that enter the secretory pathway and are targets of ER-localized proteinO-mannosyltransferases. We find thatO-mannosylation is not only a prominent modification of cell wall and plasma membrane proteins, but also of a large number of proteins from the secretory pathway with crucial functions in protein glycosylation, folding, quality control, and trafficking. The analysis of glycosylation sites revealed thatO-mannosylation is favored in unstructured regions and ?-strands. Furthermore,O-mannosylation is impeded in the proximity ofN-glycosylation sites suggesting the interplay of these types of post-translational modifications. The detailed knowledge of the target proteins and theirO-mannosylation sites opens for discovery of new roles of this essential modification in eukaryotes, and for a first glance on the evolution of different types ofO-glycosylation from yeast to mammals.

SUBMITTER: Neubert P 

PROVIDER: S-EPMC4824858 | biostudies-literature | 2016 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


O-Mannosylation is a vital protein modification conserved from fungi to humans. Yeast is a perfect model to study this post-translational modification, because in contrast to mammalsO-mannosylation is the only type ofO-glycosylation. In an essential step toward the full understanding of proteinO-mannosylation we mapped theO-mannose glycoproteome in baker's yeast. Taking advantage of anO-glycan elongation deficient yeast strain to simplify sample complexity, we identified over 500O-glycoproteins  ...[more]

Similar Datasets

2016-01-18 | PXD003238 | Pride
| S-EPMC1859868 | biostudies-literature
| S-EPMC2758718 | biostudies-literature
2013-05-06 | GSE39128 | GEO
| S-EPMC4697373 | biostudies-literature
| S-EPMC4393290 | biostudies-literature
| S-EPMC3815060 | biostudies-literature
| S-EPMC3261716 | biostudies-literature
| S-EPMC3416012 | biostudies-literature
| S-EPMC1131933 | biostudies-literature