Unknown

Dataset Information

0

Standardizing chromatin research: a simple and universal method for ChIP-seq.


ABSTRACT: Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a key technique in chromatin research. Although heavily applied, existing ChIP-seq protocols are often highly fine-tuned workflows, optimized for specific experimental requirements. Especially the initial steps of ChIP-seq, particularly chromatin shearing, are deemed to be exceedingly cell-type-specific, thus impeding any protocol standardization efforts. Here we demonstrate that harmonization of ChIP-seq workflows across cell types and conditions is possible when obtaining chromatin from properly isolated nuclei. We established an ultrasound-based nuclei extraction method (NEXSON: Nuclei EXtraction by SONication) that is highly effective across various organisms, cell types and cell numbers. The described method has the potential to replace complex cell-type-specific, but largely ineffective, nuclei isolation protocols. By including NEXSON in ChIP-seq workflows, we completely eliminate the need for extensive optimization and sample-dependent adjustments. Apart from this significant simplification, our approach also provides the basis for a fully standardized ChIP-seq and yields highly reproducible transcription factor and histone modifications maps for a wide range of different cell types. Even small cell numbers (?10,000 cells per ChIP) can be easily processed without application of modified chromatin or library preparation protocols.

SUBMITTER: Arrigoni L 

PROVIDER: S-EPMC4838356 | biostudies-literature | 2016 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Standardizing chromatin research: a simple and universal method for ChIP-seq.

Arrigoni Laura L   Richter Andreas S AS   Betancourt Emily E   Bruder Kerstin K   Diehl Sarah S   Manke Thomas T   Bönisch Ulrike U  

Nucleic acids research 20151223 7


Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a key technique in chromatin research. Although heavily applied, existing ChIP-seq protocols are often highly fine-tuned workflows, optimized for specific experimental requirements. Especially the initial steps of ChIP-seq, particularly chromatin shearing, are deemed to be exceedingly cell-type-specific, thus impeding any protocol standardization efforts. Here we demonstrate that harmonization of ChIP-seq workflow  ...[more]

Similar Datasets

| S-EPMC3834794 | biostudies-literature
| S-EPMC9202638 | biostudies-literature
| S-BSST1346 | biostudies-other
| S-BSST1347 | biostudies-other
| S-EPMC3637562 | biostudies-literature
| S-EPMC3351193 | biostudies-literature
| S-EPMC4332152 | biostudies-literature
| S-EPMC4053718 | biostudies-literature
| S-EPMC4048252 | biostudies-literature
| S-EPMC4636926 | biostudies-literature