Project description:Critical thinking skills (CTS) have been applied in the learning environment to address students' challenges in the twenty-first century. Therefore, specific approaches need to be implemented in the learning environment to support students' CTS. This research explores students' CTS during the learning process through the engineering design process (EDP) in a physics classroom. The methodology relied on a case study where students were situated for the first time in an EDP classroom. Data were analyzed for each of the EDP stages based on CTS criteria codes. The accuracy of the data was tested through a peer review process to demonstrate the validity of the analysis. The results showed that students exhibited specific CTS criteria in each EDP stage. Therefore, EDP could be an alternative method to engage CTS. This result contributes empirical evidence that the research on CTS also needs the students' performance while engaged in EDP. Supplementary Information The online version contains supplementary material available at 10.1007/s40299-021-00640-3.
Project description:We report that N-acyl-l-homoserine lactones (AHLs), a class of nonionic amphiphiles that common bacteria use as signals to coordinate group behaviors, can promote large-scale remodeling in model lipid membranes. Characterization of supported lipid bilayers (SLBs) of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) by fluorescence microscopy and quartz crystal microbalance with dissipation (QCM-D) reveals the well-studied AHL signal 3-oxo-C12-AHL and its anionic head group hydrolysis product (3-oxo-C12-HS) to promote the formation of long microtubules that can retract into hemispherical caps on the surface of the bilayer. These transformations are dynamic, reversible, and dependent upon the head group structure. Additional experiments demonstrate that 3-oxo-C12-AHL can promote remodeling to form microtubules in lipid vesicles and promote molecular transport across bilayers. Molecular dynamics (MD) simulations predict differences in thermodynamic barriers to translocation of these amphiphiles across a bilayer that are reflected in both the type and extent of reformation and associated dynamics. Our experimental observations can thus be interpreted in terms of accumulation and relief of asymmetric stresses in the inner and outer leaflets of a bilayer upon intercalation and translocation of these amphiphiles. Finally, experiments on Pseudomonas aeruginosa, a pathogen that uses 3-oxo-C12-AHL for cell-to-cell signaling, demonstrate that 3-oxo-C12-AHL and 3-oxo-C12-HS can promote membrane remodeling at biologically relevant concentrations and in the absence of other biosurfactants, such as rhamnolipids, that are produced at high population densities. Overall, these results have implications for the roles that 3-oxo-C12-AHL and its hydrolysis product may play in not only mediating intraspecies bacterial communication but also processes such as interspecies signaling and bacterial control of host-cell response. Our findings also provide guidance that could prove useful for the design of synthetic self-assembled materials that respond to bacteria in ways that are useful in the context of sensing, drug delivery, and in other fundamental and applied areas.
Project description:Bacteria use a cell-cell communication system termed quorum-sensing (QS) to adjust population size by coordinating the costly but beneficial cooperative behaviors. It has long been suggested that bacterial social conflict for expensive extracellular products may drive QS divergence and cause the "tragedy of the commons". However, the underlying molecular mechanism of social divergence and its evolutionary consequences for the bacterial ecology still remain largely unknown. By using the model bacterium Pseudomonas aeruginosa PAO1, here we show that nutrient reduction can promote QS divergence for population fitness during evolution but requiring adequate cell density. Mechanically, decreased nutrient supplies can induce RpoS-directed stringent response and enhance the selection pressure on lasR gene, and lasR mutants are evolved in association with the DNA mismatch repair "switch-off". The lasR mutants have higher relative fitness than QS-intact individuals due to their energy-saving characteristic under nutrient decreased condition. Furthermore an optimal incorporation of lasR mutants is capable of maximizing the fitness of entire population during in vitro culture and the colonization in mouse lung. Consequently, rather than worsen the population health, QS-coordinated social divergence is an elaborate evolutionary strategy that renders the entire bacterial population more fit in tough times.
Project description:Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery.
Project description:IgE and IgG1 production in the type 2 immune response is the characteristic feature of an allergic reaction. However, whether bacterial molecules modulate IgE and IgG1 production remains obscure. Here, we demonstrate that the bacterial quorum sensing molecules acyl homoserine lactones (AHLs) induce IgE and IgG1 production by activating the RARE (retinoic acid response element) response in dendritic cells (DCs) in vivo. DC-specific knockout of the retinoic acid transcriptional factor Rara diminished the AHL-stimulated type 2 immune response in vitro. AHLs altered DC phenotype, upregulated OX40L and IFN-I signature, and promoted T helper 2 cell differentiation in vitro. Finally, AHLs activated the RARE response by inhibiting AKT phosphorylation in vitro, as the AKT agonists IGF-1 and PDGF abolished the effect of AHLs on the RARE response. This study demonstrates a mechanism by which AHLs drive allergic airway inflammation through activating retinoic acid signaling in DCs.
Project description:BackgroundMisleading health claims are widespread in the media, and making choices based on such claims can negatively affect health. Thus, developing effective learning resources to enable people to think critically about health claims is of great value. Serious games can become an effective learning resource in this respect, as they can affect motivation and learning.ObjectiveThis study aims to document how user insights and input can inform the concept and development of a serious game application in critical thinking about health claims in addition to gathering user experiences with the game application.MethodsThis was a mixed methods study in 4 successive phases with both qualitative and quantitative data collected in the period from 2020-2022. Qualitative data on design and development were obtained from 4 unrecorded discussions, and qualitative evaluation data were obtained from 1 recorded focus group interview and 3 open-ended questions in the game application. The quantitative data originate from user statistics. The qualitative data were analyzed thematically, and user data were analyzed using nonparametric tests.ResultsThe first unrecorded discussion revealed that the students' (3 participants') assessment of whether a claim was reliable or not was limited to performing Google searches when faced with an ad for a health intervention. On the basis of the acquired knowledge of the target group, the game's prerequisites, and the technical possibilities, a pilot of the game was created and reviewed question by question in 3 unrecorded discussions (6 participants). After adjustments, the game was advertised at the Oslo Metropolitan University, and 193 students tested the game. A correlation (r=0.77; P<.001) was found between the number of replays and total points achieved in the game. There was no demonstrable difference (P=.07) between the total scores of students from different faculties. Overall, 36.3% (70/193) of the students answered the evaluation questions in the game. They used words such as "fun" and "educational" about the experiences with the game, and words such as "motivating" and "engaging" related to the learning experience. The design was described as "varied" and "user-friendly." Suggested improvements include adding references, more games and modules, more difficult questions, and an introductory text explaining the game. The results from the focus group interview (4 participants) corresponded to a large extent with the results of the open-ended questions in the game.ConclusionsWe found that user insights and inputs can be successfully used in the concept and development of a serious game that aims to engage students to think critically about health claims. The mixed methods evaluation revealed that the users experienced the game as educational and fun. Future research may focus on assessing the effect of the serious game on learning outcomes and health choices in randomized trials.
Project description:Flipped classroom models encourage student autonomy and reverse the order of traditional classroom content such as lectures and assignments. Virtual learning environments are ideal for executing flipped classroom models to improve critical thinking skills. This paper provides health professions faculty with guidance on developing a virtual flipped classroom in online graduate nutrition courses between September 2021 and January 2022 at the School of Health Professions, Rutgers The State University of New Jersey. Examples of pre-class, live virtual face-to-face, and post-class activities are provided. Active learning, immediate feedback, and enhanced student engagement in a flipped classroom may result in a more thorough synthesis of information, resulting in increased critical thinking skills. This article describes how a flipped classroom model design in graduate online courses that incorporate virtual face-to-face class sessions in a virtual learning environment can be utilized to promote critical thinking skills. Health professions faculty who teach online can apply the examples discussed to their online courses.
Project description:The worldwide increase in antibiotic-resistant pathogens means that identification of alternative antibacterial drug targets and the subsequent development of new treatment strategies are urgently required. One such new target is the quorum sensing (QS) system. Coral microbial consortia harbor an enormous diversity of microbes, and are thus rich sources for isolating novel bioactive and pharmacologically valuable natural products. However, to date, the versatility of their bioactive compounds has not been broadly explored. In this study, about two hundred bacterial colonies were isolated from a coral species (Pocillopora damicornis) and screened for their ability to inhibit QS using the bioreporter strain Chromobacterium violaceum ATCC 12472. Approximately 15% (30 isolates) exhibited anti-QS activity, against the indicator strain. Among them, a typical Gram-positive bacterium, D11 (Staphylococcus hominis) was identified and its anti-QS activity was investigated. Confocal microscopy observations showed that the bacterial extract inhibited the biofilm formation of clinical isolates of wild-type P. aeruginosa PAO1 in a dose-dependent pattern. Chromatographic separation led to the isolation of a potent QS inhibitor that was identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) spectroscopy as DL-homocysteine thiolactone. Gene expression analyses using RT-PCR showed that strain D11 led to a significant down-regulation of QS regulatory genes (lasI, lasR, rhlI, and rhlR), as well as a virulence-related gene (lasB). From the chemical structure, the target compound (DL-homocysteine thiolactone) is an analog of the acyl-homoserine lactones (AHLs), and we presume that DL-homocysteine thiolactone outcompetes AHL in occupying the receptor and thereby inhibiting QS. Whole-genome sequence analysis of S. hominis D11 revealed the presence of predicted genes involved in the biosynthesis of homocysteine thiolactone. This study indicates that coral microbes are a resource bank for developing QS inhibitors and they will facilitate the discovery of new biotechnologically relevant compounds that could be used instead of traditional antibiotics.
Project description:Bacteria employ quorum sensing, a form of cell-cell communication, to sense changes in population density and regulate gene expression accordingly. This work investigated the rewiring of one quorum-sensing module, the lux circuit from the marine bacterium Vibrio fischeri. Steady-state experiments demonstrate that rewiring the network architecture of this module can yield graded, threshold, and bistable gene expression as predicted by a mathematical model. The experiments also show that the native lux operon is most consistent with a threshold, as opposed to a bistable, response. Each of the rewired networks yielded functional population sensors at biologically relevant conditions, suggesting that this operon is particularly robust. These findings (i) permit prediction of the behaviors of quorum-sensing operons in bacterial pathogens and (ii) facilitate forward engineering of synthetic gene circuits.
Project description:Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of "synthetic ecological" models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections.