A simple strategy guides the complex metabolic regulation in Escherichia coli.
Ontology highlight
ABSTRACT: A way to decipher the complexity of the cellular metabolism is to study the effect of different external perturbations. Through an analysis over a sufficiently large set of gene knockouts and growing conditions, one aims to find a unifying principle that governs the metabolic regulation. For instance, it is known that the cessation of the microorganism proliferation after a gene deletion is only transient. However, we do not know the guiding principle that determines the partial or complete recovery of the growth rate, the corresponding redistribution of the metabolic fluxes and the possible different phenotypes. In spite of this large variety in the observed metabolic adjustments, we show that responses of E. coli to several different perturbations can always be derived from a sequence of greedy and myopic resilencings. This simple mechanism provides a detailed explanation for the experimental dynamics both at cellular (proliferation rate) and molecular level ((13)C-determined fluxes), also in case of appearance of multiple phenotypes. As additional support, we identified an example of a simple network motif that is capable of implementing this myopic greediness in the regulation of the metabolism.
SUBMITTER: Facchetti G
PROVIDER: S-EPMC4901314 | biostudies-literature | 2016 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA