Understanding the interactions between porphyrin-containing photosensitizers and polymer-coated nanoparticles in model biological environments.
Ontology highlight
ABSTRACT: Non-covalent incorporation of hydrophobic drugs into polymeric systems is a commonly-used strategy for drug delivery because non-covalent interactions minimize modification of the drug molecules whose efficacy is retained upon release. The behaviors of the drug-polymer delivery system in the biological environments it encounters will affect the efficacy of treatment. In this report, we have investigated the interaction between a hydrophobic drug and its encapsulating polymer in model biological environments using a photosensitizer encapsulated in a polymer-coated nanoparticle system. The photosensitizer, 3-(1'-hexyloxyethyl)-3-devinylpyropheophorbide-a (HPPH), was non-covalently incorporated to the poly(ethylene glycol) (PEG) layer coated on Au nanocages (AuNCs) to yield AuNC-HPPH complexes. The non-covalent binding was characterized by Scatchard analysis, fluorescence lifetime, and Raman experiments. The dissociation constant between PEG and HPPH was found to be ?35 ?M with a maximum loading of ?2.5×10(5) HPPHs/AuNC. The release was studied in serum-mimetic environment and in vesicles that model human cell membranes. The rate of protein-mediated drug release decreased when using a negatively-charged or cross-linked terminus of the surface-modified PEG. Furthermore, the photothermal effect of AuNCs can initiate burst release, and thus allow control of the release kinetics, demonstrating on-demand drug release. This study provides insights regarding the actions and release kinetics of non-covalent drug delivery systems in biological environments.
SUBMITTER: Jenkins SV
PROVIDER: S-EPMC4980129 | biostudies-literature | 2016 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA