Project description:New Delhi metallo-?-lactamase (NDM) represents a serious challenge for treatment and public health. A carbapenem-resistant Escherichia coli clinical strain WCHEC13-8 was subjected to antimicrobial susceptibility tests, whole genome sequencing and conjugation experiments. It was resistant to imipenem (MIC, >256 ?g/ml) and meropenem (MIC, 128 ?g/ml) and belonged to ST3835. bla NDM-1 was the only carbapenemase gene detected. Strain WCHEC13-8 also had a plasmid-borne AmpC gene (bla CMY-42) and two extended-spectrum ?-lactamase genes (bla CTX-M-15 and bla SHV-12). bla NDM-1 and bla SHV-12 were carried by a 54-kb IncX3 self-transmissible plasmid, which is identical to plasmid pNDM-HF727 from Enterobacter cloacae. bla CMY-42 was carried by a 64-kb IncI1 plasmid and bla CTX-M-15 was located on a 141-kb plasmid with multiple F replicons (replicon type: F36:A4:B1). bla CMY-42 was in a complicated context and the mobilisation of bla CMY-42 was due to the transposition of ISEcp1 by misidentifying its right-end boundary. Genetic context of bla NDM-1 in strain WCHEC13-8 was closely related to those on IncX3 plasmids in various Enterobacteriaceae species in China. In conclusion, a multidrug-resistant ST3835 E. coli clinical strain carrying bla NDM-1, bla CTX-M-15, bla CMY-42 and bla SHV-12 was identified. IncX3 plasmids may be making a significant contribution to the dissemination of bla NDM among Enterobacteriaceae in China.
Project description:BackgroundExtended spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) causing urinary tract infections often belong to sequence type 131 (ST131), serotype O25, carrying bla CTX-M-15.AimThe main aim of this study was to examine the conjugational frequencies of E. coli with plasmids carrying bla CTX-M-15 to E. coli isolates from the fecal flora of healthy humans to determine whether ST131 is more likely to uptake or donate ESBL resistance compared to other E. coli clones.Methods Donors and recipients were all clinical isolates and did not harbor plasmids with identical incompatibility groups (Inc-groups) based on in silico analyses of Inc-groups and restriction/modification systems (R/M-systems). The in vitro conjugation experiments were performed as filter conjugation with verification of transconjugants by random amplified polymorphic DNA (RAPD) PCR and bla CTX-M-15 PCR.ResultsThe frequencies of conjugation with bla CTX-M-15-carrying plasmids were found to be very rare with detectable conjugation frequencies in the range of 4x10-9-7x10-7 transconjugants/recipient. Recipients of O25/ST131 type yielded significantly lower conjugation frequencies compared to recipients of other O-types (P=0.004). The applied ST131/O25 donors did not yield detectable levels of transconjugants regardless of the applied recipient. Presence of sub-MIC levels of ampicillin increased plasmid transfer frequencies x100 fold (P=0.07).ConclusionThe results indicate that bla CTX-M-15 is rarely transferred by conjugation to E. coli isolates of the intestinal flora, even when the gene is plasmid-borne.
Project description:Pathogenic Escherichia coli found in humans and poultry carcasses harbor similar virulence and resistance genes. The present study aimed to analyze the distribution of extraintestinal pathogenic E. coli (ExPEC) virulence factors (VF), bla CTX-M groups, fosA3, and mcr-1 genes in E. coli isolated from commercialized chicken carcasses in southern Brazil and to evaluate their pathogenic risk. A total of 409 E. coli strains were isolated and characterized for genes encoding virulence factors described in ExPEC. Results of antimicrobial susceptibility testing confirmed that the strains were resistant to β-lactams, fosfomycin, colistin, and others resistance groups. The highest prevalence of VFs was observed in isolates belonging to the CTX-M groups, especially the CTX-M-2 group, when compared to those in other susceptible strains or strains with different mechanisms of resistance. Furthermore, ESBL strains were found to be 1.40 times more likely to contain three to five ExPEC virulence genes than non-ESBL strains. Our findings revealed the successful conjugation between ESBL-producing E. coli isolated from chicken carcass and the E. coli recipient strain J53, which suggested that genetic determinants encoding CTX-M enzymes may have originated from animals and could be transmitted to humans via food chain. In summary, chicken meat is a potential reservoir of MDR E. coli strains harboring resistance and virulence genes that could pose serious risks to human public health.
Project description:BackgroundThe epidemiology of extended-spectrum β-lactamases (ESBLs) has undergone dramatic changes, with CTX-M-type enzymes prevailing over other types. blaCTX-M genes, encoding CTX-M-type ESBLs, are usually found on plasmids, but chromosomal location is becoming common. Given that blaCTX-M-harboring strains often exhibit multidrug resistance (MDR), it is important to investigate the association between chromosomally integrated blaCTX-M and the presence of additional antimicrobial resistance (AMR) genes, and to identify other relevant genetic elements.MethodsA total of 46 clinical isolates of cefotaxime-resistant Enterobacteriaceae (1 Enterobacter cloacae, 9 Klebsiella pneumoniae, and 36 Escherichia coli) from Zambia were subjected to whole-genome sequencing (WGS) using MiSeq and MinION. By reconstructing nearly complete genomes, blaCTX-M genes were categorized as either chromosomal or plasmid-borne.ResultsWGS-based genotyping identified 58 AMR genes, including four blaCTX-M alleles (i.e., blaCTX-M-14, blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55). Hierarchical clustering using selected phenotypic and genotypic characteristics suggested clonal dissemination of blaCTX-M genes. Out of 45 blaCTX-M gene-carrying strains, 7 harbored the gene in their chromosome. In one E. cloacae and three E. coli strains, chromosomal blaCTX-M-15 was located on insertions longer than 10 kb. These insertions were bounded by ISEcp1 at one end, exhibited a high degree of nucleotide sequence homology with previously reported plasmids, and carried multiple AMR genes that corresponded with phenotypic AMR profiles.ConclusionOur study revealed the co-occurrence of ISEcp1-blaCTX-M-15 and multiple AMR genes on chromosomal insertions in E. cloacae and E. coli, suggesting that ISEcp1 may be responsible for the transposition of diverse AMR genes from plasmids to chromosomes. Stable retention of such insertions in chromosomes may facilitate the successful propagation of MDR clones among these Enterobacteriaceae species.
Project description:The pandemic Escherichia coli sequence type 131 (ST131) carrying plasmid-mediated colistin resistance mcr genes has emerged worldwide causing extraintestinal infections, with lineages belonging to three major clades (A, B, and C). Clade B is the most prevalent in animals, contaminating associated meat products, and can be transmitted zoonotically. However, the bla CTX-M-15 gene has only been associated with C2 subclade so far. In this study, we performed a genomic investigation of an E. coli (strain S802) isolated from a kale crop in Brazil, which exhibited a multidrug-resistant (MDR) profile to clinically significant antimicrobials (i.e., polymyxin, broad-spectrum cephalosporins, aminoglycosides, and fluoroquinolones). Whole-genome sequencing analysis revealed that the S802 strain belonged to serotype O25:H4, ST131/CC131, phylogenetic group B2, and virotype D5. Furthermore, S802 carried the clade B-associated fimH22 allele, genes encoding resistance to clinically important antimicrobials, metals, and biocides, and was phylogenetically related to human, avian, and swine ST131-H22 strains. Additionally, IncHI2-IncQ1, IncF [F2:A-:B1], and ColE1-like plasmids were identified harboring mcr-1.1, bla CTX-M-15, and qnrB19, respectively. The emergence of the E. coli ST131-H22 sublineage carrying mcr-1.1, bla CTX-M-15, and qnrB19 in agricultural soil represents a threat to food and environmental safety. Therefore, a One Health approach to genomic surveillance studies is required to effectively detect and limit the spread of antimicrobial-resistant bacteria and their resistance genes.
Project description:For the present report, a novel complex class 1 integron, In60, was characterized. Part of this integron includes the bla(CTX-M-9) gene and its downstream nucleotide sequence, which shares 81% and 78% nucleotide identity with those of kluA-1 beta-lactamase and orf3 of K. ascorbata, respectively. Furthermore, a new insertion sequence, IS3000, has been found in In60. PCR analysis indicates that integron In60 is present in 33 of 34 nonclonal enterobacterial isolates carrying the putative beta-lactamase CTX-M-9.
Project description:This study was undertaken to discern the transmission characteristics of mcr-1 and blaCTX-M-type in one multidrug-resistant Escherichia coli LWY24 from chicken in China. The genetic profiles of LWY24 isolate were determined by conjugation, S1-pulsed-field gel electrophoresis, southern blot hybridization, and whole genome sequencing analysis. Meanwhile, co-transfer of plasmids in LWY24 isolate was screened by dual conjugation assays. The LWY24 isolate was identified as ST93, and harbored 3 conjugative plasmids, pLWY24J-3 (blaCTX-M-55-bearing IncFⅡ), pLWY24J-mcr-1 (mcr-1-carrying IncI2), and pLWY24J-4 (non-resistance-conferring IncI1), and one nonconjugative plasmid pLWY24 (blaCTX-M-14-containing IncHI2/IncHI2A). Numerous resistance genes, insertion sequences (especially IS26), and transposons were found in the 4 plasmids, suggesting that horizontal transmission have occurred by plasmid mating, homologous recombination, and transpositions. Under the selection pressure of cefotaxime and colistin or cefotaxime alone, the mcr-1-bearing plasmid and the blaCTX-M-55-harboring plasmid could be co-transferred at a similar frequency, with 8.00 × 10-4 or 9.00 × 10-4 transconjugants per donor cell, respectively. The specific shufflon region in mcr-1-encoding plasmid could generate up to 6 diverse PilV structures, which may further accelerate the horizontal transfer of plasmid. In conclusion, the transmission characteristics of mcr-1 and blaCTX-M-type in LWY24 isolate could due to clonal spread of ST93, selective pressure of cefotaxime, IS26-mediate homologous recombination and transposition, and the specific shufflon region.
Project description:Two diverse conjugative plasmids can interact within bacterial cells. However, to the best of our knowledge, the interaction between blaCTX-M-bearing IncFII plasmid and mcr-1-carrying IncI2 plasmid colocated on the same bacterial host has not been reported. This study was initiated to explore the interaction and to analyze the reasons that these two plasmids are often coresident in multidrug-resistant Escherichia coli. To assess the interactions on plasmid stabilities, fitness costs, and transfer rates, we constructed two groups of isogenic derivatives, C600FII, C600I2, and C600FII+I2 of E. coli C600 and J53FII, J53I2, and J53FII+I2 of E. coli J53, respectively. We found that carriage of FII and I2 plasmids, independently and together, had not impaired the growth of the bacterial host. It was difficult for the single plasmid FII or I2 in E. coli C600 to reach stable persistence for a long time in an antibiotic-free environment, while the stability would be striking improved when they coresided. Meanwhile, plasmids FII and I2, whether together or apart, could notably enhance the fitness advantage of the host; moreover, E. coli coharboring plasmids FII and I2 presented more obvious fitness advantage than that carrying single plasmid FII. Coresident plasmids FII and I2 could accelerate horizontal cotransfer by conjugation. The transfer rates from a strain carrying coresident FII and I2 plasmids increased significantly when it mated with a recipient cell carrying one of them. Our findings highlight the advantages of coinhabitant FII and I2 plasmids in E. coli to drive the persistence and spread of plasmid-carried blaCTX-M and mcr-1 genes, although the molecular mechanisms of their coresidence warrant further study. IMPORTANCE More and more Enterobacteriaceae carry both blaCTX-M and mcr-1, which are usually located on IncFII-type and IncI2-type plasmids in the same bacterial host, respectively. However, the study on advantages of coresident plasmids in bacterial host is still sparse. Here, we investigated the stability, fitness cost, and cotransfer traits associated with coresident IncFII-type and IncI2-type plasmids in E. coli. Our results show that coinhabitant plasmids in E. coli are more stable, confer more fitness advantages, and are easier to transfer and cotransfer than a single plasmid IncFII or IncI2. Our findings confirm the advantages of coresident plasmids of blaCTX-M-bearing IncFII and mcr-1-bearing IncI2 in clinical E. coli, which will pose a serious threat to clinical therapy and public health.
Project description:A carbapenem-resistant Escherichia coli strain C-SRM-3 was isolated from hospital wastewater effluent in Hangzhou city, China in March 2022. Analysis of the whole genome sequence showed that this blaNDM-13-positive strain belonged to an internationally recognized high-risk clone ST410 responsible for the dissemination of carbapenem resistance in E. coli. This isolate displayed a multidrug-resistant phenotype and carried a cassette of antibiotic-resistant genes. blaNDM-13 gene was successfully transferred to the recipient E. coli C600 via conjugation. WGS results revealed that blaNDM-13 gene was located on an IncI1 type plasmid replicon. The phylogenetic reconstruction showed that wastewater-sourced C-SRM-3 strain was located in a single branch, far removed from human-derived and animal-sourced isolates. The detection of blaNDM-13 in hospital wastewater suggests that continuous monitoring of antibiotic-resistant genes in the environment is critical for the prevention of carbapenem-resistant bacteria spreading.
Project description:The emergence of third-generation cephalosporin resistance in Escherichia coli is increasing at an alarming rate in many countries. Thus, the aim of this study was to analyze co-infecting bla CTX-M-producing pathogenic E. coli isolates linked to three school outbreaks. Among 66 E. coli isolates, 44 were identified as ETEC O25, an ETEC isolate serotype was O2, and the other 21 were confirmed as EAEC O44. Interestingly, six patients were co-infected with EAEC O44 and ETEC O25. For these isolates, molecular analysis [antibiotic susceptibility testing, identification of the β-lactamase gene, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE)] was performed for further characterization. In addition, the transmission capacity of bla CTX-M genes was examined by conjugation experiments. Whole-genome sequencing (WGS) was performed on representative EAEC O44 and ETEC O25 isolates associated with co-infection and single-infection. All isolates were resistant to cefotaxime and ceftriaxone. All EAEC isolates carried the bla CTX-M-14 gene and all ETEC isolates the bla CTX-M-15 gene, as detected by multiplex PCR and sequencing analysis. Sequence type and PFGE results indicated three different patterns depending on the O serotype. WGS results of representative isolates revealed that the ETEC O25 strains harbored bla CTX-M-15 located on IncK plasmids associated with the Δbla TEM-bla CTX-M-15-orf477 transposon. The representative EAEC O44 isolates carried bla CTX-M-14 on the chromosome, which was surrounded by the ISEcp1-bla CTX-M-14-IS903 transposon. To the best of our knowledge, this is the first report of co-infection with chromosomally located bla CTX-M-14 and plasmid-encoding bla CTX-M-15 in pathogenic E. coli. Our findings indicate that resistance genes in clinical isolates can spread through concurrent combinations of chromosomes and plasmids.