Unknown

Dataset Information

0

Incorporation of histone derived recombinant protein for enhanced disassembly of core-membrane structured liposomal nanoparticles for efficient siRNA delivery.


ABSTRACT: A novel recombinant protein tetra-H2A (TH) derived from histone H2A has been developed to replace protamine as a conditionally reversible, nucleic acid condensing agent. The novel protein will address the insufficient release of nucleic acid therapeutics, which is captured by protamine for siRNA delivery. TH is composed of 4 tandem repeats of the histone H2A N-terminal sequence, intervened by the cathepsin D cleavage site. The repeating H2A sequence enhances the binding affinity to anionic nucleic acids, forming more stable condensates, as demonstrated by the binding affinity assay. The TH/siRNA condensates are formulated into a core-membrane structured liposomal nanoparticle (NP). The endosomes of cancer cells are rich in cathepsin D, allowing on-site degradation of TH and facilitating the intracellular release of siRNA. The NPs assembled with TH produced a higher silencing efficiency of target genes in vitro and in vivo than the NPs assembled with protamine as the nucleic acid condensing agent. The exploitation of TH in the NP formulation exhibited a biocompatibility profile similar to that of protamine, with minimal immunostimulating and systemic toxicity observed after repeated administration.

SUBMITTER: Wang Y 

PROVIDER: S-EPMC5020560 | biostudies-literature | 2013 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Incorporation of histone derived recombinant protein for enhanced disassembly of core-membrane structured liposomal nanoparticles for efficient siRNA delivery.

Wang Yuhua Y   Zhang Lu L   Guo Shutao S   Hatefi Arash A   Huang Leaf L  

Journal of controlled release : official journal of the Controlled Release Society 20130823 1


A novel recombinant protein tetra-H2A (TH) derived from histone H2A has been developed to replace protamine as a conditionally reversible, nucleic acid condensing agent. The novel protein will address the insufficient release of nucleic acid therapeutics, which is captured by protamine for siRNA delivery. TH is composed of 4 tandem repeats of the histone H2A N-terminal sequence, intervened by the cathepsin D cleavage site. The repeating H2A sequence enhances the binding affinity to anionic nucle  ...[more]

Similar Datasets

| S-EPMC3696903 | biostudies-other
| S-EPMC4289905 | biostudies-literature
2024-11-21 | PXD057444 | Pride
| S-EPMC6523661 | biostudies-literature
| S-EPMC4620662 | biostudies-literature
| S-EPMC3677313 | biostudies-literature
| S-EPMC5620143 | biostudies-literature
| S-EPMC3129796 | biostudies-literature
| S-EPMC9128192 | biostudies-literature
| S-EPMC3965374 | biostudies-literature