Unknown

Dataset Information

0

RelA-Mediated BECN1 Expression Is Required for Reactive Oxygen Species-Induced Autophagy in Oral Cancer Cells Exposed to Low-Power Laser Irradiation.


ABSTRACT: Low-power laser irradiation (LPLI) is a non-invasive and safe method for cancer treatment that alters a variety of physiological processes in the cells. Autophagy can play either a cytoprotective role or a detrimental role in cancer cells exposed to stress. The detailed mechanisms of autophagy and its role on cytotoxicity in oral cancer cells exposed to LPLI remain unclear. In this study, we showed that LPLI at 810 nm with energy density 60 J/cm2 increased the number of microtubule associated protein 1 light chain 3 (MAP1LC3) puncta and increased autophagic flux in oral cancer cells. Moreover, reactive oxygen species (ROS) production was induced, which increased RelA transcriptional activity and beclin 1 (BECN1) expression in oral cancer cells irradiated with LPLI. Furthermore, ROS scavenger or knockdown of RelA diminished LPLI-induced BECN1 expression and MAP1LC3-II conversion. In addition, pharmacological and genetic ablation of autophagy significantly enhanced the effects of LPLI-induced apoptosis in oral cancer cells. These results suggest that autophagy may be a resistant mechanism for LPLI-induced apoptosis in oral cancer cells.

SUBMITTER: Shu CW 

PROVIDER: S-EPMC5025201 | biostudies-literature | 2016

REPOSITORIES: biostudies-literature

altmetric image

Publications

RelA-Mediated BECN1 Expression Is Required for Reactive Oxygen Species-Induced Autophagy in Oral Cancer Cells Exposed to Low-Power Laser Irradiation.

Shu Chih-Wen CW   Chang Hong-Tai HT   Wu Chieh-Shan CS   Chen Chien-Hsun CH   Wu Sam S   Chang Hsueh-Wei HW   Kuo Soong-Yu SY   Fu Earl E   Liu Pei-Feng PF   Hsieh Yao-Dung YD  

PloS one 20160915 9


Low-power laser irradiation (LPLI) is a non-invasive and safe method for cancer treatment that alters a variety of physiological processes in the cells. Autophagy can play either a cytoprotective role or a detrimental role in cancer cells exposed to stress. The detailed mechanisms of autophagy and its role on cytotoxicity in oral cancer cells exposed to LPLI remain unclear. In this study, we showed that LPLI at 810 nm with energy density 60 J/cm2 increased the number of microtubule associated pr  ...[more]

Similar Datasets

| S-EPMC2682036 | biostudies-literature
| S-EPMC4316155 | biostudies-literature
| S-EPMC6429163 | biostudies-literature
| S-EPMC4878812 | biostudies-literature
| S-EPMC5379159 | biostudies-literature
| S-EPMC3171134 | biostudies-literature
| S-EPMC2829511 | biostudies-literature
| S-EPMC4749305 | biostudies-literature
| S-EPMC4513341 | biostudies-literature
| S-EPMC8125544 | biostudies-literature