Critical Role of IRF-3 in the Direct Regulation of dsRNA-Induced Retinoic Acid-Inducible Gene-I (RIG-I) Expression.
Ontology highlight
ABSTRACT: The cytoplasmic viral sensor retinoic acid-inducible gene-I (RIG-I), which is also known as an IFN-stimulated gene (ISG), senses viral RNA to activate antiviral signaling. It is therefore thought that RIG-I is regulated in a STAT1-dependent manner. Although RIG-I-mediated antiviral signaling is indispensable for the induction of an appropriate adaptive immune response, the mechanism underlying the regulation of RIG-I expression remains elusive. Here, we examined the direct regulation of RIG-I expression by interferon regulatory factor 3 (IRF-3), which is an essential molecule for antiviral innate immunity. We initially found that RIG-I can be induced by dsRNA in both IFN-independent and IRF-3-dependent manners. A sequence analysis revealed that the RIG-I gene has putative IRF-3-binding sites in its promoter region. Using a combination of cellular, molecular biological, and mutational approaches, we first showed that IRF-3 can directly regulate the expression of RIG-I via a single IRF-element (IRF-E) site in the proximal promoter region of the RIG-I gene in response to dsRNA. IRF-3 is considered a master regulator in antiviral signaling for the generation of type I interferons (IFNs). Thus, our findings demonstrate that RIG-I expression induced by the IRF-3-mediated pathway may serve as a crucial antiviral factor for reinforcing a surveillance system against viral invasion through the regulation of the cytoplasmic viral sensor RIG-I.
SUBMITTER: Hayakari R
PROVIDER: S-EPMC5035021 | biostudies-literature | 2016
REPOSITORIES: biostudies-literature
ACCESS DATA