Unknown

Dataset Information

0

Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during differentiation.


ABSTRACT: Pluripotency, differentiation, and X Chromosome inactivation (XCI) are key aspects of embryonic development. However, the underlying relationship and mechanisms among these processes remain unclear. Here, we systematically dissected these features along developmental progression using mouse embryonic stem cells (mESCs) and single-cell RNA sequencing with allelic resolution. We found that mESCs grown in a ground state 2i condition displayed transcriptomic profiles diffused from preimplantation mouse embryonic cells, whereas EpiStem cells closely resembled the post-implantation epiblast. Sex-related gene expression varied greatly across distinct developmental states. We also identified novel markers that were highly enriched in each developmental state. Moreover, we revealed that several novel pathways, including PluriNetWork and Focal Adhesion, were responsible for the delayed progression of female EpiStem cells. Importantly, we "digitalized" XCI progression using allelic expression of active and inactive X Chromosomes and surprisingly found that XCI states exhibited profound variability in each developmental state, including the 2i condition. XCI progression was not tightly synchronized with loss of pluripotency and increase of differentiation at the single-cell level, although these processes were globally correlated. In addition, highly expressed genes, including core pluripotency factors, were in general biallelically expressed. Taken together, our study sheds light on the dynamics of XCI progression and the asynchronicity between pluripotency, differentiation, and XCI.

SUBMITTER: Chen G 

PROVIDER: S-EPMC5052059 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during differentiation.

Chen Geng G   Schell John Paul JP   Benitez Julio Aguila JA   Petropoulos Sophie S   Yilmaz Marlene M   Reinius Björn B   Alekseenko Zhanna Z   Shi Leming L   Hedlund Eva E   Lanner Fredrik F   Sandberg Rickard R   Deng Qiaolin Q  

Genome research 20160802 10


Pluripotency, differentiation, and X Chromosome inactivation (XCI) are key aspects of embryonic development. However, the underlying relationship and mechanisms among these processes remain unclear. Here, we systematically dissected these features along developmental progression using mouse embryonic stem cells (mESCs) and single-cell RNA sequencing with allelic resolution. We found that mESCs grown in a ground state 2i condition displayed transcriptomic profiles diffused from preimplantation mo  ...[more]

Similar Datasets

2016-07-27 | E-GEOD-74155 | biostudies-arrayexpress
| S-EPMC6353908 | biostudies-literature
2016-07-27 | GSE74155 | GEO
| S-EPMC3756906 | biostudies-literature
| S-EPMC5589911 | biostudies-literature
| S-EPMC6555151 | biostudies-literature
| S-EPMC6918769 | biostudies-literature
| S-EPMC8474932 | biostudies-literature
| S-EPMC8410849 | biostudies-literature
| S-EPMC10592962 | biostudies-literature