Unknown

Dataset Information

0

Dynamics of Escherichia coli's passive response to a sudden decrease in external osmolarity.


ABSTRACT: For most cells, a sudden decrease in external osmolarity results in fast water influx that can burst the cell. To survive, cells rely on the passive response of mechanosensitive channels, which open under increased membrane tension and allow the release of cytoplasmic solutes and water. Although the gating and the molecular structure of mechanosensitive channels found in Escherichia coli have been extensively studied, the overall dynamics of the whole cellular response remain poorly understood. Here, we characterize E. coli's passive response to a sudden hypoosmotic shock (downshock) on a single-cell level. We show that initial fast volume expansion is followed by a slow volume recovery that can end below the initial value. Similar response patterns were observed at downshocks of a wide range of magnitudes. Although wild-type cells adapted to osmotic downshocks and resumed growing, cells of a double-mutant ([Formula: see text]) strain expanded, but failed to fully recover, often lysing or not resuming growth at high osmotic downshocks. We propose a theoretical model to explain our observations by simulating mechanosensitive channels opening, and subsequent solute efflux and water flux. The model illustrates how solute efflux, driven by mechanical pressure and solute chemical potential, competes with water influx to reduce cellular osmotic pressure and allow volume recovery. Our work highlights the vital role of mechanosensation in bacterial survival.

SUBMITTER: Buda R 

PROVIDER: S-EPMC5056102 | biostudies-literature | 2016 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamics of Escherichia coli's passive response to a sudden decrease in external osmolarity.

Buda Renata R   Liu Yunxiao Y   Yang Jin J   Hegde Smitha S   Stevenson Keiran K   Bai Fan F   Pilizota Teuta T  

Proceedings of the National Academy of Sciences of the United States of America 20160919 40


For most cells, a sudden decrease in external osmolarity results in fast water influx that can burst the cell. To survive, cells rely on the passive response of mechanosensitive channels, which open under increased membrane tension and allow the release of cytoplasmic solutes and water. Although the gating and the molecular structure of mechanosensitive channels found in Escherichia coli have been extensively studied, the overall dynamics of the whole cellular response remain poorly understood.  ...[more]

Similar Datasets

| S-EPMC3044393 | biostudies-literature
| S-EPMC4299493 | biostudies-literature
| S-EPMC9138201 | biostudies-literature
| S-EPMC7192501 | biostudies-literature
| S-EPMC4311812 | biostudies-literature
| S-EPMC4182436 | biostudies-literature
| S-EPMC6145594 | biostudies-literature
2021-03-09 | PXD024151 | Pride
| S-EPMC8406200 | biostudies-literature
| S-EPMC2873904 | biostudies-literature