Cytoplasmic calcium increase via fusion with inactivated Sendai virus induces apoptosis in human multiple myeloma cells by downregulation of c-Myc oncogene.
Ontology highlight
ABSTRACT: Because the emergence of drug resistance is a major limitation of current treatments for multiple myeloma (MM), it is necessary to continuously develop novel anticancer strategies. Here, using an inactivated Sendai virus (Hemagglutinating Virus of Japan; HVJ) envelope (HVJ-E), we discovered that increase of cytoplasmic Ca2+ by virus-cell fusion significantly induced apoptosis against human MM cells but not peripheral blood mononuclear cells from healthy donors. Interaction of F protein of HVJ-E with MM cells increased intracellular Ca2+ level of MMs by the induction of Ca2+ efflux from endoplasmic reticulum but not influx from extracellular region. The elevation of the Ca2+ cytoplasmic level induced SMAD1/5/8 phosphorylation and translocation into the nucleus, and SMAD1/5/8 and SMAD4 complex suppressed c-Myc transcription. Meanwhile, HVJ-E decreases S62 phosphorylation of c-Myc and promotes c-Myc protein degradation. Thus, HVJ-E-induced cell death of MM resulted from suppression of c-Myc by both destabilization of c-Myc protein and downregulation of c-Myc transcription. This study indicates that HVJ-E will be a promising tool for MM therapy.
SUBMITTER: Jiang Y
PROVIDER: S-EPMC5094981 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA