Unknown

Dataset Information

0

Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.


ABSTRACT: Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI+] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid.

SUBMITTER: Langlois CR 

PROVIDER: S-EPMC5096688 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.

Langlois Christine R CR   Pei Fen F   Sindi Suzanne S SS   Serio Tricia R TR  

PLoS genetics 20161104 11


Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, wh  ...[more]

Similar Datasets

| S-EPMC4030713 | biostudies-literature
| S-EPMC2533192 | biostudies-literature
| S-EPMC2438228 | biostudies-literature
| S-EPMC517824 | biostudies-literature
| S-EPMC4150125 | biostudies-literature
| S-EPMC4452204 | biostudies-literature
| S-EPMC5883524 | biostudies-literature
| S-EPMC5363067 | biostudies-literature
| S-EPMC1952226 | biostudies-literature
| S-EPMC7997880 | biostudies-literature