Unknown

Dataset Information

0

Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides.


ABSTRACT: Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light-matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. Here, we investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS2 and MoSe2) through a study combining microscopic theory with spectroscopic measurements. We show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. In particular, in WS2, we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures.

SUBMITTER: Selig M 

PROVIDER: S-EPMC5103057 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides.

Selig Malte M   Berghäuser Gunnar G   Raja Archana A   Nagler Philipp P   Schüller Christian C   Heinz Tony F TF   Korn Tobias T   Chernikov Alexey A   Malic Ermin E   Knorr Andreas A  

Nature communications 20161107


Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light-matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. Here, we investi  ...[more]

Similar Datasets

| S-EPMC5394266 | biostudies-literature
| S-EPMC7163797 | biostudies-literature
| S-EPMC8224436 | biostudies-literature
| S-EPMC6137096 | biostudies-literature