Unknown

Dataset Information

0

Topological superconductivity in monolayer transition metal dichalcogenides.


ABSTRACT: Theoretically, it has been known that breaking spin degeneracy and effectively realizing spinless fermions is a promising path to topological superconductors. Yet, topological superconductors are rare to date. Here we propose to realize spinless fermions by splitting the spin degeneracy in momentum space. Specifically, we identify monolayer hole-doped transition metal dichalcogenide (TMD)s as candidates for topological superconductors out of such momentum-space-split spinless fermions. Although electron-doped TMDs have recently been found superconducting, the observed superconductivity is unlikely topological because of the near spin degeneracy. Meanwhile, hole-doped TMDs with momentum-space-split spinless fermions remain unexplored. Employing a renormalization group analysis, we propose that the unusual spin-valley locking in hole-doped TMDs together with repulsive interactions selectively favours two topological superconducting states: interpocket paired state with Chern number 2 and intrapocket paired state with finite pair momentum. A confirmation of our predictions will open up possibilities for manipulating topological superconductors on the device-friendly platform of monolayer TMDs.

SUBMITTER: Hsu YT 

PROVIDER: S-EPMC5394266 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Topological superconductivity in monolayer transition metal dichalcogenides.

Hsu Yi-Ting YT   Vaezi Abolhassan A   Fischer Mark H MH   Kim Eun-Ah EA  

Nature communications 20170411


Theoretically, it has been known that breaking spin degeneracy and effectively realizing spinless fermions is a promising path to topological superconductors. Yet, topological superconductors are rare to date. Here we propose to realize spinless fermions by splitting the spin degeneracy in momentum space. Specifically, we identify monolayer hole-doped transition metal dichalcogenide (TMD)s as candidates for topological superconductors out of such momentum-space-split spinless fermions. Although  ...[more]

Similar Datasets

| S-EPMC8224436 | biostudies-literature
| S-EPMC4522664 | biostudies-literature
| S-EPMC7163797 | biostudies-literature
| S-EPMC5103057 | biostudies-literature
| S-EPMC6137096 | biostudies-literature