Unknown

Dataset Information

0

Promotion of behavior and neuronal function by reactive oxygen species in C. elegans.


ABSTRACT: Reactive oxygen species (ROS) are well known to elicit a plethora of detrimental effects on cellular functions by causing damages to proteins, lipids and nucleic acids. Neurons are particularly vulnerable to ROS, and nearly all forms of neurodegenerative diseases are associated with oxidative stress. Here, we report the surprising finding that exposing C. elegans to low doses of H2O2 promotes, rather than compromises, sensory behavior and the function of sensory neurons such as ASH. This beneficial effect of H2O2 is mediated by an evolutionarily conserved peroxiredoxin-p38/MAPK signaling cascade. We further show that p38/MAPK signals to AKT and the TRPV channel OSM-9, a sensory channel in ASH neurons. AKT phosphorylates OSM-9, and such phosphorylation is required for H2O2-induced potentiation of sensory behavior and ASH neuron function. Our results uncover a beneficial effect of ROS on neurons, revealing unexpected complexity of the action of oxidative stressors in the nervous system.

SUBMITTER: Li G 

PROVIDER: S-EPMC5105148 | biostudies-literature | 2016 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Promotion of behavior and neuronal function by reactive oxygen species in C. elegans.

Li Guang G   Gong Jianke J   Lei Haoyun H   Liu Jianfeng J   Xu X Z Shawn XZ  

Nature communications 20161108


Reactive oxygen species (ROS) are well known to elicit a plethora of detrimental effects on cellular functions by causing damages to proteins, lipids and nucleic acids. Neurons are particularly vulnerable to ROS, and nearly all forms of neurodegenerative diseases are associated with oxidative stress. Here, we report the surprising finding that exposing C. elegans to low doses of H<sub>2</sub>O<sub>2</sub> promotes, rather than compromises, sensory behavior and the function of sensory neurons suc  ...[more]

Similar Datasets

| S-EPMC5471238 | biostudies-literature
2014-05-08 | GSE54024 | GEO
| S-EPMC10616421 | biostudies-literature
2014-05-08 | E-GEOD-54024 | biostudies-arrayexpress
| S-EPMC7176462 | biostudies-literature
| S-EPMC6307858 | biostudies-literature
| S-EPMC5292721 | biostudies-literature
| S-EPMC2804214 | biostudies-literature
| S-EPMC5041511 | biostudies-literature
| S-EPMC3909278 | biostudies-literature