Unknown

Dataset Information

0

AXL Inhibition Suppresses the DNA Damage Response and Sensitizes Cells to PARP Inhibition in Multiple Cancers.


ABSTRACT: Epithelial to mesenchymal transition (EMT) is associated with a wide range of changes in cancer cells, including stemness, chemo- and radio-resistance, and metastasis. The mechanistic role of upstream mediators of EMT has not yet been well characterized. Recently, we showed that non-small cell lung cancers (NSCLC) that have undergone EMT overexpress AXL, a receptor tyrosine kinase. AXL is also overexpressed in a subset of triple-negative breast cancers (TNBC) and head and neck squamous cell carcinomas (HNSCC), and its overexpression has been associated with more aggressive tumor behavior and linked to resistance to chemotherapy, radiotherapy, and targeted therapy. Because the DNA repair pathway is also altered in patient tumor specimens overexpressing AXL, it is hypothesized that modulation of AXL in cells that have undergone EMT will sensitize them to agents targeting the DNA repair pathway. Downregulation or inhibition of AXL directly reversed the EMT phenotype, led to decreased expression of DNA repair genes, and diminished efficiency of homologous recombination (HR) and RAD51 foci formation. As a result, AXL inhibition caused a state of HR deficiency in the cells, making them sensitive to inhibition of the DNA repair protein, PARP1. AXL inhibition synergized with PARP inhibition, leading to apoptotic cell death. AXL expression also associated positively with markers of DNA repair across TNBC, HNSCC, and NSCLC patient cohorts.The novel role for AXL in DNA repair, linking it to EMT, suggests that AXL can be an effective therapeutic target in combination with targeted therapy such as PARP inhibitors in several different malignancies. Mol Cancer Res; 15(1); 45-58. ©2016 AACR.

SUBMITTER: Balaji K 

PROVIDER: S-EPMC5215967 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

AXL Inhibition Suppresses the DNA Damage Response and Sensitizes Cells to PARP Inhibition in Multiple Cancers.

Balaji Kavitha K   Vijayaraghavan Smruthi S   Diao Lixia L   Tong Pan P   Fan Youhong Y   Carey Jason Pw JP   Bui Tuyen N TN   Warner Steve S   Heymach John V JV   Hunt Kelly K KK   Wang Jing J   Byers Lauren Averett LA   Keyomarsi Khandan K  

Molecular cancer research : MCR 20160926 1


Epithelial to mesenchymal transition (EMT) is associated with a wide range of changes in cancer cells, including stemness, chemo- and radio-resistance, and metastasis. The mechanistic role of upstream mediators of EMT has not yet been well characterized. Recently, we showed that non-small cell lung cancers (NSCLC) that have undergone EMT overexpress AXL, a receptor tyrosine kinase. AXL is also overexpressed in a subset of triple-negative breast cancers (TNBC) and head and neck squamous cell carc  ...[more]

Similar Datasets

| S-EPMC7229844 | biostudies-literature
| S-EPMC10500056 | biostudies-literature
| S-EPMC3272302 | biostudies-literature
| S-EPMC7155421 | biostudies-literature
| S-EPMC8816812 | biostudies-literature
| S-EPMC5705017 | biostudies-literature
| S-EPMC8783444 | biostudies-literature
| S-EPMC4517890 | biostudies-literature
| S-EPMC5063668 | biostudies-literature
| S-EPMC4497871 | biostudies-literature