Ontology highlight
ABSTRACT:
SUBMITTER: Iotchkova V
PROVIDER: S-EPMC5279872 | biostudies-literature | 2016 Nov
REPOSITORIES: biostudies-literature
Iotchkova Valentina V Huang Jie J Morris John A JA Jain Deepti D Barbieri Caterina C Walter Klaudia K Min Josine L JL Chen Lu L Astle William W Cocca Massimilian M Deelen Patrick P Elding Heather H Farmaki Aliki-Eleni AE Franklin Christopher S CS Franberg Mattias M Gaunt Tom R TR Hofman Albert A Jiang Tao T Kleber Marcus E ME Lachance Genevieve G Luan Jian'an J Malerba Giovanni G Matchan Angela A Mead Daniel D Memari Yasin Y Ntalla Ioanna I Panoutsopoulou Kalliope K Pazoki Raha R Perry John R B JRB Rivadeneira Fernando F Sabater-Lleal Maria M Sennblad Bengt B Shin So-Youn SY Southam Lorraine L Traglia Michela M van Dijk Freerk F van Leeuwen Elisabeth M EM Zaza Gianluigi G Zhang Weihua W Amin Najaf N Butterworth Adam A Chambers John C JC Dedoussis George G Dehghan Abbas A Franco Oscar H OH Franke Lude L Frontini Mattia M Gambaro Giovanni G Gasparini Paolo P Hamsten Anders A Issacs Aaron A Kooner Jaspal S JS Kooperberg Charles C Langenberg Claudia C Marz Winfried W Scott Robert A RA Swertz Morris A MA Toniolo Daniela D Uitterlinden Andre G AG van Duijn Cornelia M CM Watkins Hugh H Zeggini Eleftheria E Maurano Mathew T MT Timpson Nicholas J NJ Reiner Alexander P AP Auer Paul L PL Soranzo Nicole N
Nature genetics 20160926 11
Large-scale whole-genome sequence data sets offer novel opportunities to identify genetic variation underlying human traits. Here we apply genotype imputation based on whole-genome sequence data from the UK10K and 1000 Genomes Project into 35,981 study participants of European ancestry, followed by association analysis with 20 quantitative cardiometabolic and hematological traits. We describe 17 new associations, including 6 rare (minor allele frequency (MAF) < 1%) or low-frequency (1% < MAF < 5 ...[more]