Unknown

Dataset Information

0

Crystal Structure and Catalytic Mechanism of CouO, a Versatile C-Methyltransferase from Streptomyces rishiriensis.


ABSTRACT: Friedel-Crafts alkylation of aromatic systems is a classic reaction in organic chemistry, for which regiospecific mono-alkylation, however, is generally difficult to achieve. In nature, methyltransferases catalyze the addition of methyl groups to a wide range of biomolecules thereby modulating the physico-chemical properties of these compounds. Specifically, S-adenosyl-L-methionine dependent C-methyltransferases possess a high potential to serve as biocatalysts in environmentally benign organic syntheses. Here, we report on the high resolution crystal structure of CouO, a C-methyltransferase from Streptomyces rishiriensis involved in the biosynthesis of the antibiotic coumermycin A1. Through molecular docking calculations, site-directed mutagenesis and the comparison with homologous enzymes we identified His120 and Arg121 as key functional residues for the enzymatic activity of this group of C-methyltransferases. The elucidation of the atomic structure and the insight into the catalytic mechanism provide the basis for the (semi)-rational engineering of the enzyme in order to increase the substrate scope as well as to facilitate the acceptance of SAM-analogues as alternative cofactors.

SUBMITTER: Pavkov-Keller T 

PROVIDER: S-EPMC5289526 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Crystal Structure and Catalytic Mechanism of CouO, a Versatile C-Methyltransferase from Streptomyces rishiriensis.

Pavkov-Keller Tea T   Steiner Kerstin K   Faber Mario M   Tengg Martin M   Schwab Helmut H   Gruber-Khadjawi Mandana M   Gruber Karl K  

PloS one 20170202 2


Friedel-Crafts alkylation of aromatic systems is a classic reaction in organic chemistry, for which regiospecific mono-alkylation, however, is generally difficult to achieve. In nature, methyltransferases catalyze the addition of methyl groups to a wide range of biomolecules thereby modulating the physico-chemical properties of these compounds. Specifically, S-adenosyl-L-methionine dependent C-methyltransferases possess a high potential to serve as biocatalysts in environmentally benign organic  ...[more]

Similar Datasets

| S-EPMC6108940 | biostudies-literature
| S-EPMC3048721 | biostudies-literature
| S-EPMC3874184 | biostudies-literature
| S-EPMC2781687 | biostudies-literature
| S-EPMC2562079 | biostudies-literature
| S-EPMC6795141 | biostudies-literature
| S-EPMC4933244 | biostudies-literature
| S-EPMC203307 | biostudies-literature
| S-EPMC1413642 | biostudies-literature
| S-EPMC10932547 | biostudies-literature