Effects of nutritional and ambient oxygen condition on biofilm formation in Mycobacterium avium subsp. hominissuis via altered glycolipid expression.
Ontology highlight
ABSTRACT: Mycobacterium avium subsp. hominissuis (MAH) is the major causative agent of nontuberculous mycobacteriosis, the representative case of environment-related infectious diseases the incidence of which is increasing in industrialized countries. MAH is found in biofilm in drinking water distribution system and residential environments. We investigated the effect of gaseous and nutritional conditions, and the role of glycopeptidolipids (GPLs) on biofilm-like pellicle formation in MAH. Pellicle formation was observed under 5% oxygen in Middlebrook 7H9 broth containing 0.2% glycerol and 10% albumin-dextrose-catalase enrichment but not under normoxia or in nutrient-poor media. An analysis of 17 environmental isolates revealed that hypoxia (5% oxygen) preferentially enhanced pellicle formation both in plastic plates and in glass tubes, compared with hypercapnia (5% carbon dioxide). Wild-type strains (WT) developed much thicker pellicles than GPL-deficient rough mutants (RM). WT bacterial cells distributed randomly and individually in contrast to that RM cells positioned linearly in a definite order. Exogenous supplementation of GPLs thickened the pellicles of RM, resulting in a similar morphological pattern to WT. These data suggest a significant implication of eutrophication and hypoxia in biofilm-like pellicle formation, and a functional role of GPLs on development of pellicles in MAH.
SUBMITTER: Totani T
PROVIDER: S-EPMC5290538 | biostudies-literature | 2017 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA