Unknown

Dataset Information

0

Evidence of a DHA Signature in the Lipidome and Metabolome of Human Hepatocytes.


ABSTRACT: Cell supplementation with bioactive molecules often causes a perturbation in the whole intracellular environment. Omics techniques can be applied for the assessment of this perturbation. In this study, the overall effect of docosahexaenoic acid (DHA) supplementation on cultured human hepatocyte lipidome and metabolome has been investigated using nuclear magnetic resonance (NMR) in combination with traditional techniques. The effect of two additional bioactives sharing with DHA the lipid-lowering effect-propionic acid (PRO) and protocatechuic acid (PCA)-has also been evaluated in the context of possible synergism. NMR analysis of the cell lipid extracts showed that DHA supplementation, alone or in combination with PCA or PRO, strongly altered the cell lipid profile. The perfect discrimination between cells receiving DHA (alone or in combination) and the other cells reinforced the idea of a global rearrangement of the lipid environment induced by DHA. Notably, gas chromatography and fluorimetric analyses confirmed the strong discrimination obtained by NMR. The DHA signature was evidenced not only in the cell lipidome, but also in the metabolome. Results reported herein indicate that NMR, combined with other techniques, represents a fundamental approach to studying the effect of bioactive supplementation, particularly in the case of molecules with a broad spectrum of mechanisms of action.

SUBMITTER: Ghini V 

PROVIDER: S-EPMC5343894 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Evidence of a DHA Signature in the Lipidome and Metabolome of Human Hepatocytes.

Ghini Veronica V   Di Nunzio Mattia M   Tenori Leonardo L   Valli Veronica V   Danesi Francesca F   Capozzi Francesco F   Luchinat Claudio C   Bordoni Alessandra A  

International journal of molecular sciences 20170208 2


Cell supplementation with bioactive molecules often causes a perturbation in the whole intracellular environment. Omics techniques can be applied for the assessment of this perturbation. In this study, the overall effect of docosahexaenoic acid (DHA) supplementation on cultured human hepatocyte lipidome and metabolome has been investigated using nuclear magnetic resonance (NMR) in combination with traditional techniques. The effect of two additional bioactives sharing with DHA the lipid-lowering  ...[more]

Similar Datasets

2017-03-02 | MTBLS419 | MetaboLights
| S-EPMC7996494 | biostudies-literature
2014-05-30 | E-GEOD-49379 | biostudies-arrayexpress
| S-EPMC6893025 | biostudies-literature
2014-05-30 | GSE49379 | GEO
| S-EPMC6588695 | biostudies-literature
| S-EPMC6628932 | biostudies-literature
| S-EPMC11249805 | biostudies-literature
| S-EPMC1929076 | biostudies-literature
| S-EPMC3744433 | biostudies-literature