Estrogen prevents bone loss through transforming growth factor beta signaling in T cells.
Ontology highlight
ABSTRACT: Estrogen (E) deficiency leads to an expansion of the pool of tumor necrosis factor (TNF)-producing T cells through an IFN-gamma-dependent pathway that results in increased levels of the osteoclastogenic cytokine TNF in the bone marrow. Disregulated IFN-gamma production is instrumental for the bone loss induced by ovariectomy (ovx), but the responsible mechanism is unknown. We now show that mice with T cell-specific blockade of type beta transforming growth factor (TGFbeta) signaling are completely insensitive to the bone-sparing effect of E. This phenotype results from a failure of E to repress IFN-gamma production, which, in turn, leads to increased T cell activation and T cell TNF production. Furthermore, ovx blunts TGFbeta levels in the bone marrow, and overexpression of TGFbeta in vivo prevents ovx-induced bone loss. These findings demonstrate that E prevents bone loss through a TGFbeta-dependent mechanism, and that TGFbeta signaling in T cells preserves bone homeostasis by blunting T cell activation. Thus, stimulation of TGFbeta production in the bone marrow is a critical "upstream" mechanism by which E prevents bone loss, and enhancement of TGFbeta levels in vivo may constitute a previously undescribed therapeutic approach for preventing bone loss.
SUBMITTER: Gao Y
PROVIDER: S-EPMC534514 | biostudies-literature | 2004 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA