Unknown

Dataset Information

0

Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy.


ABSTRACT: Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2.

SUBMITTER: Carvalho BR 

PROVIDER: S-EPMC5347091 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7908013 | biostudies-literature
| S-EPMC7718217 | biostudies-literature
| S-EPMC8007611 | biostudies-literature
| S-EPMC3859311 | biostudies-literature
| S-EPMC5676962 | biostudies-literature
| S-EPMC6425473 | biostudies-literature
| S-EPMC5309855 | biostudies-other
| S-EPMC5964251 | biostudies-literature
| S-EPMC9806838 | biostudies-literature
| S-EPMC7468142 | biostudies-literature