Unknown

Dataset Information

0

Multiple functional self-association interfaces in plant TIR domains.


ABSTRACT: The self-association of Toll/interleukin-1 receptor/resistance protein (TIR) domains has been implicated in signaling in plant and animal immunity receptors. Structure-based studies identified different TIR-domain dimerization interfaces required for signaling of the plant nucleotide-binding oligomerization domain-like receptors (NLRs) L6 from flax and disease resistance protein RPS4 from Arabidopsis Here we show that the crystal structure of the TIR domain from the Arabidopsis NLR suppressor of npr1-1, constitutive 1 (SNC1) contains both an L6-like interface involving helices ?D and ?E (DE interface) and an RPS4-like interface involving helices ?A and ?E (AE interface). Mutations in either the AE- or DE-interface region disrupt cell-death signaling activity of SNC1, L6, and RPS4 TIR domains and full-length L6 and RPS4. Self-association of L6 and RPS4 TIR domains is affected by mutations in either region, whereas only AE-interface mutations affect SNC1 TIR-domain self-association. We further show two similar interfaces in the crystal structure of the TIR domain from the Arabidopsis NLR recognition of Peronospora parasitica 1 (RPP1). These data demonstrate that both the AE and DE self-association interfaces are simultaneously required for self-association and cell-death signaling in diverse plant NLRs.

SUBMITTER: Zhang X 

PROVIDER: S-EPMC5347627 | biostudies-literature | 2017 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications


The self-association of Toll/interleukin-1 receptor/resistance protein (TIR) domains has been implicated in signaling in plant and animal immunity receptors. Structure-based studies identified different TIR-domain dimerization interfaces required for signaling of the plant nucleotide-binding oligomerization domain-like receptors (NLRs) L6 from flax and disease resistance protein RPS4 from <i>Arabidopsis</i> Here we show that the crystal structure of the TIR domain from the <i>Arabidopsis</i> NLR  ...[more]

Similar Datasets

| S-EPMC3142617 | biostudies-literature
| S-EPMC10022894 | biostudies-literature
| S-EPMC7045805 | biostudies-literature
2023-04-21 | GSE225075 | GEO
2023-04-21 | GSE225072 | GEO
2023-04-21 | GSE225073 | GEO
| S-EPMC10972746 | biostudies-literature
| S-EPMC9153377 | biostudies-literature
| S-EPMC4379167 | biostudies-literature
| S-EPMC8184933 | biostudies-literature