Unknown

Dataset Information

0

Molecular mechanism of voltage sensor movements in a potassium channel.


ABSTRACT: Voltage-gated potassium channels are six-transmembrane (S1-S6) proteins that form a central pore domain (4 x S5-S6) surrounded by four voltage sensor domains (S1-S4), which detect changes in membrane voltage and control pore opening. Upon depolarization, the S4 segments move outward carrying charged residues across the membrane field, thereby leading to the opening of the pore. The mechanism of S4 motion is controversial. We have investigated how S4 moves relative to the pore domain in the prototypical Shaker potassium channel. We introduced pairs of cysteines, one in S4 and the other in S5, and examined proximity changes between each pair of cysteines during activation, using Cd2+ and copper-phenanthroline, which crosslink the cysteines with metal and disulphide bridges, respectively. Modelling of the results suggests a novel mechanism: in the resting state, the top of the S3b-S4 voltage sensor paddle lies close to the top of S5 of the adjacent subunit, but moves towards the top of S5 of its own subunit during depolarization--this motion is accompanied by a reorientation of S4 charges to the extracellular phase.

SUBMITTER: Elliott DJ 

PROVIDER: S-EPMC535096 | biostudies-literature | 2004 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular mechanism of voltage sensor movements in a potassium channel.

Elliott David J S DJ   Neale Edward J EJ   Aziz Qadeer Q   Aziz Qadeer Q   Dunham James P JP   Munsey Tim S TS   Hunter Malcolm M   Sivaprasadarao Asipu A  

The EMBO journal 20041125 24


Voltage-gated potassium channels are six-transmembrane (S1-S6) proteins that form a central pore domain (4 x S5-S6) surrounded by four voltage sensor domains (S1-S4), which detect changes in membrane voltage and control pore opening. Upon depolarization, the S4 segments move outward carrying charged residues across the membrane field, thereby leading to the opening of the pore. The mechanism of S4 motion is controversial. We have investigated how S4 moves relative to the pore domain in the proto  ...[more]

Similar Datasets

| S-EPMC6911011 | biostudies-literature
| S-EPMC5112519 | biostudies-literature
| S-EPMC2266593 | biostudies-literature
| S-EPMC4933587 | biostudies-literature
| S-EPMC2668160 | biostudies-literature
| S-EPMC8157969 | biostudies-literature
| S-EPMC3368149 | biostudies-literature
| S-EPMC3012494 | biostudies-literature
| S-EPMC6475427 | biostudies-literature
| S-EPMC9674223 | biostudies-literature