Unknown

Dataset Information

0

Extracellular RNAs Are Associated With Insulin Resistance and Metabolic Phenotypes.


ABSTRACT: OBJECTIVE:Insulin resistance (IR) is a hallmark of obesity and metabolic disease. Circulating extracellular RNAs (ex-RNAs), stable RNA molecules in plasma, may play a role in IR, though most studies on ex-RNAs in IR are small. We sought to characterize the relationship between ex-RNAs and metabolic phenotypes in a large community-based human cohort. RESEARCH DESIGN AND METHODS:We measured circulating plasma ex-RNAs in 2,317 participants without diabetes in the Framingham Heart Study (FHS) Offspring Cohort at cycle 8 and defined associations between ex-RNAs and IR (measured by circulating insulin level). We measured association between candidate ex-RNAs and markers of adiposity. Sensitivity analyses included individuals with diabetes. In a separate cohort of 90 overweight/obese youth, we measured selected ex-RNAs and metabolites. Biology of candidate microRNAs was investigated in silico. RESULTS:The mean age of FHS participants was 65.8 years (56% female), with average BMI 27.7 kg/m2; participants in the youth cohort had a mean age of 15.5 years (60% female), with mean BMI 33.8 kg/m2. In age-, sex-, and BMI-adjusted models across 391 ex-RNAs in FHS, 18 ex-RNAs were associated with IR (of which 16 were microRNAs). miR-122 was associated with IR and regional adiposity in adults and IR in children (independent of metabolites). Pathway analysis revealed metabolic regulatory roles for miR-122, including regulation of IR pathways (AMPK, target of rapamycin signaling, and mitogen-activated protein kinase). CONCLUSIONS:These results provide translational evidence in support of an important role of ex-RNAs as novel circulating factors implicated in IR.

SUBMITTER: Shah R 

PROVIDER: S-EPMC5360281 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Objective</h4>Insulin resistance (IR) is a hallmark of obesity and metabolic disease. Circulating extracellular RNAs (ex-RNAs), stable RNA molecules in plasma, may play a role in IR, though most studies on ex-RNAs in IR are small. We sought to characterize the relationship between ex-RNAs and metabolic phenotypes in a large community-based human cohort.<h4>Research design and methods</h4>We measured circulating plasma ex-RNAs in 2,317 participants without diabetes in the Framingham Heart Stu  ...[more]

Similar Datasets

| S-EPMC4338313 | biostudies-literature
| S-EPMC6805293 | biostudies-literature
| S-EPMC6356387 | biostudies-literature
| S-EPMC7751110 | biostudies-literature
| S-EPMC3005903 | biostudies-literature
| S-EPMC4538811 | biostudies-literature
| S-EPMC7922675 | biostudies-literature
| S-EPMC7250139 | biostudies-literature
2023-01-31 | GSE218025 | GEO
| S-EPMC2672155 | biostudies-literature