Unknown

Dataset Information

0

DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states.


ABSTRACT: Duplication of the genome during the S phase of the cell cycle does not occur simultaneously; rather, different sequences are replicated at different times. The replication timing of specific sequences can change during development; however, the determinants of this dynamic process are poorly understood. To gain insights into the contribution of developmental state, genomic sequence, and transcriptional activity to replication timing, we investigated the timing of DNA replication at high resolution along an entire human chromosome (chromosome 22) in two different cell types. The pattern of replication timing was correlated with respect to annotated genes, gene expression, novel transcribed regions of unknown function, sequence composition, and cytological features. We observed that chromosome 22 contains regions of early- and late-replicating domains of 100 kb to 2 Mb, many (but not all) of which are associated with previously described chromosomal bands. In both cell types, expressed sequences are replicated earlier than nontranscribed regions. However, several highly transcribed regions replicate late. Overall, the DNA replication-timing profiles of the two different cell types are remarkably similar, with only nine regions of difference observed. In one case, this difference reflects the differential expression of an annotated gene that resides in this region. Novel transcribed regions with low coding potential exhibit a strong propensity for early DNA replication. Although the cellular function of such transcripts is poorly understood, our results suggest that their activity is linked to the replication-timing program.

SUBMITTER: White EJ 

PROVIDER: S-EPMC539744 | biostudies-literature | 2004 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states.

White Eric J EJ   Emanuelsson Olof O   Scalzo David D   Royce Thomas T   Kosak Steven S   Oakeley Edward J EJ   Weissman Sherman S   Gerstein Mark M   Groudine Mark M   Snyder Michael M   Schübeler Dirk D  

Proceedings of the National Academy of Sciences of the United States of America 20041210 51


Duplication of the genome during the S phase of the cell cycle does not occur simultaneously; rather, different sequences are replicated at different times. The replication timing of specific sequences can change during development; however, the determinants of this dynamic process are poorly understood. To gain insights into the contribution of developmental state, genomic sequence, and transcriptional activity to replication timing, we investigated the timing of DNA replication at high resolut  ...[more]

Similar Datasets

2004-11-01 | E-MEXP-184 | biostudies-arrayexpress
| S-EPMC6212846 | biostudies-literature
| S-EPMC1450206 | biostudies-literature
2018-05-16 | GSE114480 | GEO
2017-08-31 | GSE103321 | GEO
2006-02-16 | GSE4240 | GEO
2006-10-12 | GSE6010 | GEO
2010-06-10 | E-GEOD-6010 | biostudies-arrayexpress
| S-EPMC3413666 | biostudies-literature
| S-EPMC2171734 | biostudies-literature