Project description:Wolbachia pipientis is an obligate intracellular bacterium capable of spreading itself through populations by manipulating the reproduction of its hosts. The Wolbachia strain wMelPop, which reduces longevity in Drosophila melanogaster, has been introduced into the Dengue virus mosquito vector, Aedes aegypti, as a strategy to reduce disease transmission. The infecting Wolbachia halve the lifespan of the mosquito and induce numerous behavioral and physiological abnormalities that reduce the ability of the mosquito to successfully obtain a blood meal. We aim to understand the mechanism underpinning these changes and hence have chosen to explore how Wolbachia may be interacting with the insects nervous and muscle tissue. We carried out a series whole genome profiling experiments based on head and muscle tissues to identify mosquito pathways affected by the microbe.
Project description:To better understand neural codes for spatial navigation and to address cognitive development questions, the neurobiology of postnatal hippocampal development is receiving increased attention. While the Morris Water Maze is the gold standard for assessing hippocampal integrity, potential confounds can be difficult to control for in juvenile rodents (around three weeks of age, when spatial navigation ability first emerges) and this wet maze is not amenable to electrophysiological recording. A dry maze alternative with minimal training, like the Barnes Maze adapted for juvenile rats, can help overcome these obstacles. This paper describes in detail the experimental procedure and data analyses for the adapted Barnes maze for juvenile animals.